{"id":"https://openalex.org/W4224219462","doi":"https://doi.org/10.48550/arxiv.2204.10290","title":"Learning to Revise References for Faithful Summarization","display_name":"Learning to Revise References for Faithful Summarization","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4224219462","doi":"https://doi.org/10.48550/arxiv.2204.10290"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2204.10290","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2204.10290","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5034426796","display_name":"Griffin Adams","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Adams, Griffin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5020003693","display_name":"Han-Chin Shing","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shing, Han-Chin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100427493","display_name":"Qing Sun","orcid":"https://orcid.org/0000-0001-5158-1106"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sun, Qing","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077126470","display_name":"Christopher Winestock","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Winestock, Christopher","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5109565051","display_name":"Kathleen McKeown","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"McKeown, Kathleen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5047270546","display_name":"No\u00e9mie Elhadad","orcid":"https://orcid.org/0000-0001-9721-5240"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Elhadad, No\u00e9mie","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.642673,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":71,"max":76},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13702","display_name":"Machine Learning in Healthcare","score":0.9886,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/information-retrieval","display_name":"Information Retrieval","score":0.507687},{"id":"https://openalex.org/keywords/abstraction","display_name":"Abstraction","score":0.46862227}],"concepts":[{"id":"https://openalex.org/C170858558","wikidata":"https://www.wikidata.org/wiki/Q1394144","display_name":"Automatic summarization","level":2,"score":0.82300454},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.80788136},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.66147393},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.62992895},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.61911035},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6149388},{"id":"https://openalex.org/C124304363","wikidata":"https://www.wikidata.org/wiki/Q673661","display_name":"Abstraction","level":2,"score":0.46862227},{"id":"https://openalex.org/C2779530757","wikidata":"https://www.wikidata.org/wiki/Q1207505","display_name":"Quality (philosophy)","level":2,"score":0.44210225},{"id":"https://openalex.org/C2777530160","wikidata":"https://www.wikidata.org/wiki/Q41796","display_name":"Sentence","level":2,"score":0.42750734},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.41906255},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.33135065},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2204.10290","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2204.10290","pdf_url":"http://arxiv.org/pdf/2204.10290","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2204.10290","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2204.10290","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","id":"https://metadata.un.org/sdg/16","score":0.44},{"display_name":"Quality education","id":"https://metadata.un.org/sdg/4","score":0.4}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4389760904","https://openalex.org/W4323520239","https://openalex.org/W4306886878","https://openalex.org/W4242223894","https://openalex.org/W3148229873","https://openalex.org/W2366403280","https://openalex.org/W2150160875","https://openalex.org/W2091301346","https://openalex.org/W1517524280","https://openalex.org/W1495108544"],"abstract_inverted_index":{"In":[0],"real-world":[1],"scenarios":[2],"with":[3,94],"naturally":[4],"occurring":[5],"datasets,":[6],"reference":[7,51,66,92],"summaries":[8,134],"are":[9,148,162],"noisy":[10,127],"and":[11,81,88,119,141,153,167],"may":[12],"contain":[13],"information":[14],"that":[15],"cannot":[16],"be":[17,114],"inferred":[18],"from":[19,129],"the":[20,136,143],"source":[21,71],"text.":[22],"On":[23],"large":[24],"news":[25],"corpora,":[26,43],"removing":[27],"low":[28],"quality":[29,52],"samples":[30],"has":[31],"been":[32],"shown":[33],"to":[34,47,62,68,90,116,151],"reduce":[35],"model":[36],"hallucinations.":[37],"Yet,":[38],"for":[39,135],"smaller,":[40],"and/or":[41],"noisier":[42],"filtering":[44],"is":[45,101],"detrimental":[46],"performance.":[48],"To":[49,121],"improve":[50],"while":[53],"retaining":[54],"all":[55],"data,":[56],"we":[57,125],"propose":[58],"a":[59,76,104],"new":[60],"approach:":[61],"selectively":[63],"re-write":[64],"unsupported":[65],"sentences":[67,87,93],"better":[69],"reflect":[70],"data.":[72,176],"We":[73],"automatically":[74],"generate":[75],"synthetic":[77],"dataset":[78],"of":[79,99,138],"positive":[80],"negative":[82],"revisions":[83,100],"by":[84],"corrupting":[85],"supported":[86],"learn":[89],"revise":[91],"contrastive":[95],"learning.":[96],"The":[97],"intensity":[98],"treated":[102],"as":[103],"controllable":[105],"attribute":[106],"so":[107],"that,":[108],"at":[109],"inference,":[110],"diverse":[111],"candidates":[112],"can":[113],"over-generated-then-rescored":[115],"balance":[117],"faithfulness":[118],"abstraction.":[120],"test":[122],"our":[123],"methods,":[124],"extract":[126],"references":[128,161],"publicly":[130],"available":[131],"MIMIC-III":[132],"discharge":[133],"task":[137],"hospital-course":[139],"summarization,":[140],"vary":[142],"data":[144],"on":[145,158,172],"which":[146],"models":[147,156,170],"trained.":[149],"According":[150],"metrics":[152],"human":[154],"evaluation,":[155],"trained":[157,171],"revised":[159],"clinical":[160],"much":[163],"more":[164],"faithful,":[165],"informative,":[166],"fluent":[168],"than":[169],"original":[173],"or":[174],"filtered":[175]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4224219462","counts_by_year":[{"year":2023,"cited_by_count":2}],"updated_date":"2024-12-05T21:11:07.989168","created_date":"2022-04-26"}