{"id":"https://openalex.org/W4224292363","doi":"https://doi.org/10.48550/arxiv.2204.07963","title":"AFSC: Adaptive Fourier Space Compression for Anomaly Detection","display_name":"AFSC: Adaptive Fourier Space Compression for Anomaly Detection","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4224292363","doi":"https://doi.org/10.48550/arxiv.2204.07963"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2204.07963","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2204.07963","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5011080373","display_name":"Haote Xu","orcid":"https://orcid.org/0000-0002-4601-3152"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Haote","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100410605","display_name":"Yunlong Zhang","orcid":"https://orcid.org/0000-0002-2447-9138"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Yunlong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100548274","display_name":"Liyan Sun","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sun, Liyan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047137615","display_name":"Chenxin Li","orcid":"https://orcid.org/0000-0002-6276-7712"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Chenxin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100772804","display_name":"Yue Huang","orcid":"https://orcid.org/0000-0002-3913-9400"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Huang, Yue","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5052820597","display_name":"Xinghao Ding","orcid":"https://orcid.org/0000-0003-2288-5287"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ding, Xinghao","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.642673,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":80},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9898,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9898,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9852,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.975,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/anomaly-detection","display_name":"Anomaly Detection","score":0.569567},{"id":"https://openalex.org/keywords/outlier-detection","display_name":"Outlier Detection","score":0.544648},{"id":"https://openalex.org/keywords/medical-image-analysis","display_name":"Medical Image Analysis","score":0.53163},{"id":"https://openalex.org/keywords/medical-imaging","display_name":"Medical Imaging","score":0.515289},{"id":"https://openalex.org/keywords/computer-aided-detection","display_name":"Computer-Aided Detection","score":0.513434},{"id":"https://openalex.org/keywords/anomaly","display_name":"Anomaly (physics)","score":0.50754344},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.46485245},{"id":"https://openalex.org/keywords/position","display_name":"Position (finance)","score":0.44998738}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.61447287},{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.59126997},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5831908},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.5799281},{"id":"https://openalex.org/C102519508","wikidata":"https://www.wikidata.org/wiki/Q6520159","display_name":"Fourier transform","level":2,"score":0.5136604},{"id":"https://openalex.org/C12997251","wikidata":"https://www.wikidata.org/wiki/Q567560","display_name":"Anomaly (physics)","level":2,"score":0.50754344},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5073585},{"id":"https://openalex.org/C180016635","wikidata":"https://www.wikidata.org/wiki/Q2712821","display_name":"Compression (physics)","level":2,"score":0.49041173},{"id":"https://openalex.org/C2780801425","wikidata":"https://www.wikidata.org/wiki/Q5164392","display_name":"Construct (python library)","level":2,"score":0.4654883},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.46485245},{"id":"https://openalex.org/C198082294","wikidata":"https://www.wikidata.org/wiki/Q3399648","display_name":"Position (finance)","level":2,"score":0.44998738},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.20341888},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.098965466},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C10138342","wikidata":"https://www.wikidata.org/wiki/Q43015","display_name":"Finance","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C97355855","wikidata":"https://www.wikidata.org/wiki/Q11473","display_name":"Thermodynamics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C26873012","wikidata":"https://www.wikidata.org/wiki/Q214781","display_name":"Condensed matter physics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2204.07963","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2204.07963","pdf_url":"http://arxiv.org/pdf/2204.07963","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2204.07963","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2204.07963","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4377864969","https://openalex.org/W4300558037","https://openalex.org/W4290647774","https://openalex.org/W3210364259","https://openalex.org/W3207797160","https://openalex.org/W3189286258","https://openalex.org/W2972971679","https://openalex.org/W2912112202","https://openalex.org/W2806741695","https://openalex.org/W2667207928"],"abstract_inverted_index":{"Anomaly":[0],"Detection":[1],"(AD)":[2],"on":[3,31,143],"medical":[4],"images":[5,26,43],"enables":[6],"a":[7,36,45],"model":[8,79],"to":[9,40,70,72,116,155],"recognize":[10],"any":[11],"type":[12],"of":[13,124,139],"anomaly":[14],"pattern":[15],"without":[16],"lesion-specific":[17],"supervised":[18,46],"learning.":[19],"Data":[20],"augmentation":[21],"based":[22],"methods":[23],"construct":[24],"pseudo-healthy":[25,60],"by":[27,53,83],"\"pasting\"":[28],"fake":[29,67],"lesions":[30,68,96],"real":[32,74],"healthy":[33,42,98,118],"ones,":[34],"and":[35,59,127,136,146,160],"network":[37],"is":[38,153],"trained":[39],"predict":[41],"in":[44,100,129],"manner.":[47],"The":[48,122],"lesion":[49],"can":[50,92,164],"be":[51,165],"found":[52],"difference":[54],"between":[55],"the":[56,78,85,133,144],"unhealthy":[57,102],"input":[58],"output.":[61],"However,":[62],"using":[63],"only":[64],"manually":[65],"designed":[66],"fail":[69],"approximate":[71],"irregular":[73],"lesions,":[75],"hence":[76],"limiting":[77],"generalization.":[80],"We":[81],"assume":[82],"exploring":[84],"intrinsic":[86],"data":[87],"property":[88],"within":[89],"images,":[90],"we":[91,107],"distinguish":[93],"previously":[94],"unseen":[95],"from":[97],"regions":[99],"an":[101,109,150,161],"image.":[103],"In":[104],"this":[105],"study,":[106],"propose":[108],"Adaptive":[110],"Fourier":[111],"Space":[112],"Compression":[113],"(AFSC)":[114],"module":[115,163],"distill":[117],"feature":[119],"for":[120],"AD.":[121],"compression":[123],"both":[125],"magnitude":[126],"phase":[128],"frequency":[130],"domain":[131],"addresses":[132],"hyper":[134],"intensity":[135],"diverse":[137],"position":[138],"lesions.":[140],"Experimental":[141],"results":[142],"BraTS":[145],"MS-SEG":[147],"datasets":[148],"demonstrate":[149],"AFSC":[151,162],"baseline":[152],"able":[154],"produce":[156],"promising":[157],"detection":[158],"results,":[159],"effectively":[166],"embedded":[167],"into":[168],"existing":[169],"AD":[170],"methods.":[171]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4224292363","counts_by_year":[{"year":2024,"cited_by_count":3}],"updated_date":"2024-12-05T04:27:35.229954","created_date":"2022-04-26"}