{"id":"https://openalex.org/W4225670790","doi":"https://doi.org/10.48550/arxiv.2204.00949","title":"Matching Feature Sets for Few-Shot Image Classification","display_name":"Matching Feature Sets for Few-Shot Image Classification","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4225670790","doi":"https://doi.org/10.48550/arxiv.2204.00949"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2204.00949","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2204.00949","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5038710894","display_name":"Arman Afrasiyabi","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Afrasiyabi, Arman","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5019862529","display_name":"Hugo Larochelle","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Larochelle, Hugo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5034761030","display_name":"Jean\u2010Fran\u00e7ois Lalonde","orcid":"https://orcid.org/0000-0002-6583-2364"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lalonde, Jean-Fran\u00e7ois","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5045218915","display_name":"Christian Gagn\u00e9","orcid":"https://orcid.org/0000-0003-3697-4184"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gagn\u00e9, Christian","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.609792,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":60,"max":70},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9877,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9804,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.6488582},{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.57339615},{"id":"https://openalex.org/keywords/feature-vector","display_name":"Feature vector","score":0.5551039},{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.5157647}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.72013247},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.71721363},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.66828984},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.6488582},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.6359805},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.6216708},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.59590805},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.57768756},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.57339615},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.5557157},{"id":"https://openalex.org/C83665646","wikidata":"https://www.wikidata.org/wiki/Q42139305","display_name":"Feature vector","level":2,"score":0.5551039},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.5157647},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.49816084},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.49266416},{"id":"https://openalex.org/C2778344882","wikidata":"https://www.wikidata.org/wiki/Q278938","display_name":"Shot (pellet)","level":2,"score":0.41772214},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.17968765},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C178790620","wikidata":"https://www.wikidata.org/wiki/Q11351","display_name":"Organic chemistry","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2204.00949","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2204.00949","pdf_url":"http://arxiv.org/pdf/2204.00949","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2204.00949","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2204.00949","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.68,"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4298312966","https://openalex.org/W4214877189","https://openalex.org/W2980279061","https://openalex.org/W2773965352","https://openalex.org/W2565656575","https://openalex.org/W2381179799","https://openalex.org/W2366718574","https://openalex.org/W2359774528","https://openalex.org/W2334685461","https://openalex.org/W2074502265"],"abstract_inverted_index":{"In":[0,28,176],"image":[1,143],"classification,":[2],"it":[3],"is":[4,139,153],"common":[5],"practice":[6],"to":[7,11,40,71,80,85,141],"train":[8],"deep":[9],"networks":[10],"extract":[12,41],"a":[13,52,57,135],"single":[14],"feature":[15,44,83,90],"vector":[16],"per":[17],"input":[18],"image.":[19,48],"Few-shot":[20],"classification":[21],"methods":[22],"also":[23],"mostly":[24],"follow":[25],"this":[26,29,34],"trend.":[27],"work,":[30],"we":[31,78],"depart":[32],"from":[33,62,92],"established":[35],"direction":[36],"and":[37,111,133,151,166,173],"instead":[38,86],"propose":[39,79],"sets":[42,88],"of":[43,60,89,125,147],"vectors":[45,91],"for":[46],"each":[47],"We":[49],"argue":[50],"that":[51,119],"set-based":[53],"representation":[54,59],"intrinsically":[55],"builds":[56],"richer":[58],"images":[61],"the":[63,72,122,171,184],"base":[64],"classes,":[65],"which":[66],"can":[67],"subsequently":[68],"better":[69],"transfer":[70],"few-shot":[73,160],"classes.":[74],"To":[75],"do":[76],"so,":[77],"adapt":[81],"existing":[82,103],"extractors":[84],"produce":[87],"images.":[93],"Our":[94],"approach,":[95],"dubbed":[96],"SetFeat,":[97],"embeds":[98],"shallow":[99],"self-attention":[100],"mechanisms":[101],"inside":[102],"encoder":[104],"architectures.":[105],"The":[106,145],"attention":[107],"modules":[108],"are":[109],"lightweight,":[110],"as":[112,127],"such":[113],"our":[114,148,181],"method":[115,182],"results":[116],"in":[117,169],"encoders":[118],"have":[120],"approximately":[121],"same":[123],"number":[124],"parameters":[126],"their":[128],"original":[129],"versions.":[130],"During":[131],"training":[132],"inference,":[134],"set-to-set":[136],"matching":[137],"metric":[138],"used":[140],"perform":[142],"classification.":[144],"effectiveness":[146],"proposed":[149],"architecture":[150],"metrics":[152],"demonstrated":[154],"via":[155],"thorough":[156],"experiments":[157],"on":[158],"standard":[159],"datasets":[161],"--":[162,168],"namely":[163],"miniImageNet,":[164],"tieredImageNet,":[165],"CUB":[167],"both":[170],"1-":[172],"5-shot":[174],"scenarios.":[175],"all":[177],"cases":[178],"but":[179],"one,":[180],"outperforms":[183],"state-of-the-art.":[185]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4225670790","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-02-22T16:23:21.531158","created_date":"2022-05-05"}