{"id":"https://openalex.org/W4221151250","doi":"https://doi.org/10.48550/arxiv.2203.16365","title":"IGRF-RFE: A Hybrid Feature Selection Method for MLP-based Network Intrusion Detection on UNSW-NB15 Dataset","display_name":"IGRF-RFE: A Hybrid Feature Selection Method for MLP-based Network Intrusion Detection on UNSW-NB15 Dataset","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4221151250","doi":"https://doi.org/10.48550/arxiv.2203.16365"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.16365","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"journal-article","indexed_in":["datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2203.16365","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5082587986","display_name":"Yuhua Yin","orcid":"https://orcid.org/0000-0002-9212-5585"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yin, Yuhua","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5007979944","display_name":"Julian Jang\u2010Jaccard","orcid":"https://orcid.org/0000-0002-1002-057X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jang-Jaccard, Julian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100442064","display_name":"Xu Wen","orcid":"https://orcid.org/0000-0003-1823-5193"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Wen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075210141","display_name":"Amardeep Singh","orcid":"https://orcid.org/0000-0003-1916-3347"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Singh, Amardeep","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5031626010","display_name":"Jinting Zhu","orcid":"https://orcid.org/0000-0002-0682-1796"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhu, Jinting","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087242242","display_name":"Fariza Sabrina","orcid":"https://orcid.org/0000-0002-8455-2499"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sabrina, Fariza","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5078627842","display_name":"Jin Kwak","orcid":"https://orcid.org/0000-0001-6931-2705"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kwak, Jin","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9939,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12326","display_name":"Network Packet Processing and Optimization","score":0.9678,"subfield":{"id":"https://openalex.org/subfields/1708","display_name":"Hardware and Architecture"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.6981994},{"id":"https://openalex.org/keywords/multilayer-perceptron","display_name":"Multilayer perceptron","score":0.59449214}],"concepts":[{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.84632534},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.70286536},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.6981994},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6089665},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.60104185},{"id":"https://openalex.org/C179717631","wikidata":"https://www.wikidata.org/wiki/Q2991667","display_name":"Multilayer perceptron","level":3,"score":0.59449214},{"id":"https://openalex.org/C35525427","wikidata":"https://www.wikidata.org/wiki/Q745881","display_name":"Intrusion detection system","level":2,"score":0.5174209},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.5152595},{"id":"https://openalex.org/C70518039","wikidata":"https://www.wikidata.org/wiki/Q16000077","display_name":"Dimensionality reduction","level":2,"score":0.51520354},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.5049022},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.41379637},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.29414666},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.091851264},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.16365","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2203.16365","pdf_url":"http://arxiv.org/pdf/2203.16365","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2203.16365","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.16365","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":null,"is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/15","score":0.71,"display_name":"Life on land"}],"grants":[],"datasets":[],"versions":["https://openalex.org/W4319264752"],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4254602698","https://openalex.org/W3176621072","https://openalex.org/W3135897568","https://openalex.org/W2394461323","https://openalex.org/W2390009783","https://openalex.org/W2357468538","https://openalex.org/W2355007334","https://openalex.org/W2349441905","https://openalex.org/W20047544","https://openalex.org/W1577110157"],"abstract_inverted_index":{"The":[0,151],"effectiveness":[1],"of":[2,12,18,88,143,168],"machine":[3],"learning":[4],"models":[5],"is":[6,85,158,170],"significantly":[7],"affected":[8],"by":[9],"the":[10,13,16,28,62,68,79,86,97,121,131,141,148,155,165],"size":[11],"dataset":[14,133],"and":[15,22,67,91],"quality":[17],"features":[19,24,118],"as":[20,54,108],"redundant":[21,117],"irrelevant":[23],"can":[25,51,139],"radically":[26],"degrade":[27],"performance.":[29],"This":[30],"paper":[31],"proposes":[32],"IGRF-RFE:":[33],"a":[34,45,55,109],"hybrid":[35],"feature":[36,56,64,70,81,98,106,111,123,149,156],"selection":[37,65,71,82,112],"method":[38,66,113,138],"tasked":[39],"for":[40],"multi-class":[41],"network":[42],"anomalies":[43],"using":[44],"Multilayer":[46],"perceptron":[47],"(MLP)":[48],"network.":[49],"IGRF-RFE":[50],"be":[52],"considered":[53],"reduction":[57],"technique":[58],"based":[59,129],"on":[60,120,130],"both":[61],"filter":[63,80],"wrapper":[69,110],"method.":[72],"In":[73],"our":[74,136],"proposed":[75,137],"method,":[76,83],"we":[77,103],"use":[78],"which":[84],"combination":[87],"Information":[89],"Gain":[90],"Random":[92],"Forest":[93],"Importance,":[94],"to":[95,114,162,174],"reduce":[96],"subset":[99],"search":[100],"space.":[101],"Then,":[102],"apply":[104],"recursive":[105],"elimination(RFE)":[107],"further":[115],"eliminate":[116],"recursively":[119],"reduced":[122,159],"subsets.":[124],"Our":[125],"experimental":[126],"results":[127,152],"obtained":[128],"UNSW-NB15":[132],"confirm":[134],"that":[135,154],"improve":[140],"accuracy":[142,167],"anomaly":[144],"detection":[145],"while":[146,164],"reducing":[147],"dimension.":[150],"show":[153],"dimension":[157],"from":[160,172],"42":[161],"23":[163],"multi-classification":[166],"MLP":[169],"improved":[171],"82.25%":[173],"84.24%.":[175]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4221151250","counts_by_year":[],"updated_date":"2025-03-04T14:16:52.135642","created_date":"2022-04-03"}