{"id":"https://openalex.org/W4221167642","doi":"https://doi.org/10.48550/arxiv.2203.16110","title":"Weakly-supervised Temporal Path Representation Learning with Contrastive Curriculum Learning -- Extended Version","display_name":"Weakly-supervised Temporal Path Representation Learning with Contrastive Curriculum Learning -- Extended Version","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4221167642","doi":"https://doi.org/10.48550/arxiv.2203.16110"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.16110","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2203.16110","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5054708051","display_name":"Bin Yang","orcid":"https://orcid.org/0000-0001-7819-2290"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Sean Bin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5084021933","display_name":"Chenjuan Guo","orcid":"https://orcid.org/0000-0002-4516-4637"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Guo, Chenjuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5020559625","display_name":"Jilin Hu","orcid":"https://orcid.org/0000-0002-7739-7769"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hu, Jilin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072309548","display_name":"Bin Yang","orcid":"https://orcid.org/0000-0002-1658-1079"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Bin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039176528","display_name":"Jian Tang","orcid":"https://orcid.org/0000-0003-4418-0114"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tang, Jian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5029380368","display_name":"Christian S. Jensen","orcid":"https://orcid.org/0000-0002-9697-7670"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jensen, Christian S.","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[{"id":"https://openalex.org/I891191580","display_name":"Aalborg University","ror":"https://ror.org/04m5j1k67","country_code":"DK","type":"education","lineage":["https://openalex.org/I891191580"]}],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.720461,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":60,"max":70},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11980","display_name":"Human Mobility and Location-Based Analysis","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11980","display_name":"Human Mobility and Location-Based Analysis","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10698","display_name":"Transportation Planning and Optimization","score":0.9942,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.5831206},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.5208852},{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.45031595}],"concepts":[{"id":"https://openalex.org/C2777735758","wikidata":"https://www.wikidata.org/wiki/Q817765","display_name":"Path (computing)","level":2,"score":0.7489117},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6690796},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.6101693},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5952557},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.5831206},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.5208852},{"id":"https://openalex.org/C189430467","wikidata":"https://www.wikidata.org/wiki/Q7293293","display_name":"Ranking (information retrieval)","level":2,"score":0.46998775},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.45031595},{"id":"https://openalex.org/C2780801425","wikidata":"https://www.wikidata.org/wiki/Q5164392","display_name":"Construct (python library)","level":2,"score":0.41432205},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.390066},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.32724825},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.29109007},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.16110","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2203.16110","pdf_url":"http://arxiv.org/pdf/2203.16110","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2203.16110","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.16110","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","score":0.41,"id":"https://metadata.un.org/sdg/11"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4389832810","https://openalex.org/W4313561566","https://openalex.org/W4281663961","https://openalex.org/W4220682630","https://openalex.org/W3208888551","https://openalex.org/W3208386644","https://openalex.org/W3181622257","https://openalex.org/W3163146846","https://openalex.org/W2983142544","https://openalex.org/W2891059443"],"abstract_inverted_index":{"In":[0,43],"step":[1],"with":[2,122],"the":[3,35,78,97,113,123,146,160,192,214,223,230,250,262,265],"digitalization":[4],"of":[5,13,87,125,151,264],"transportation,":[6],"we":[7,128,162,195,239],"are":[8,167,174],"witnessing":[9],"a":[10,130,139,152,156,241],"growing":[11],"range":[12],"path-based":[14],"smart-city":[15],"applications,":[16,69],"e.g.,":[17,31,179],"travel-time":[18],"estimation":[19],"and":[20,58,62,92,148,169,173,199,208],"travel":[21],"path":[22,36,53,141,154,202],"ranking.":[23],"A":[24],"temporal":[25,29,52,59,114,140,149,153,180,201,209],"path(TP)":[26],"that":[27,55,63,143,166,249],"includes":[28],"information,":[30,210],"departure":[32,188],"time,":[33],"into":[34,155],"is":[37,47],"fundamental":[38],"to":[39,49,76,95,100,117,171,176,222,255],"enable":[40],"such":[41,248],"applications.":[42],"this":[44],"setting,":[45],"it":[46],"essential":[48],"learn":[50,108],"generic":[51,109],"representations(TPRs)":[54],"consider":[56],"spatial":[57,147,207],"correlations":[60],"simultaneously":[61],"can":[64,107],"be":[65],"used":[66],"in":[67],"different":[68,177],"i.e.,":[70],"downstream":[71],"tasks.":[72],"Existing":[73],"methods":[74,83,106],"fail":[75,94],"achieve":[77],"goal":[79],"since":[80],"(i)":[81],"supervised":[82],"require":[84],"large":[85],"amounts":[86],"task-specific":[88],"labels":[89,165,181],"when":[90],"training":[91,213,257],"thus":[93],"generalize":[96],"obtained":[98],"TPRs":[99],"other":[101],"tasks;":[102],"(ii)":[103],"through":[104],"unsupervised":[105],"representations,":[110],"they":[111],"disregard":[112],"aspect,":[115],"leading":[116],"sub-optimal":[118],"results.":[119],"To":[120,158,234],"contend":[121],"limitations":[124],"existing":[126],"solutions,":[127],"propose":[129,138,240],"Weakly-Supervised":[131],"Contrastive":[132],"(WSC)":[133],"learning":[134,218,242,251],"model.":[135],"We":[136],"first":[137],"encoder":[142,215],"encodes":[144],"both":[145,206],"information":[150],"TPR.":[157],"train":[159],"encoder,":[161],"introduce":[163],"weak":[164,193],"easy":[168,254],"inexpensive":[170],"obtain":[172],"relevant":[175],"tasks,":[178],"indicating":[182],"peak":[183],"vs.":[184],"off-peak":[185],"hours":[186],"from":[187,253],"times.":[189],"Based":[190],"on":[191,245],"labels,":[194],"construct":[196],"meaningful":[197],"positive":[198,224],"negative":[200,231],"samples":[203],"by":[204,219],"considering":[205],"which":[211],"facilities":[212],"using":[216],"contrastive":[217,237],"pulling":[220],"closer":[221],"samples'":[225,232],"representations":[226],"while":[227],"pushing":[228],"away":[229],"representations.":[233],"better":[235],"guide":[236],"learning,":[238],"strategy":[243],"based":[244],"Curriculum":[246],"Learning":[247],"performs":[252],"hard":[256],"instances.":[258],"Experiments":[259],"studies":[260],"verify":[261],"effectiveness":[263],"proposed":[266],"method.":[267]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4221167642","counts_by_year":[{"year":2022,"cited_by_count":1}],"updated_date":"2025-01-04T15:09:50.820406","created_date":"2022-04-03"}