{"id":"https://openalex.org/W4226069987","doi":"https://doi.org/10.48550/arxiv.2203.15549","title":"Invariance Learning based on Label Hierarchy","display_name":"Invariance Learning based on Label Hierarchy","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4226069987","doi":"https://doi.org/10.48550/arxiv.2203.15549"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.15549","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2203.15549","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5047322932","display_name":"Shoji Toyota","orcid":"https://orcid.org/0000-0003-0613-4205"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Toyota, Shoji","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5012922872","display_name":"Kenji Fukumizu","orcid":"https://orcid.org/0000-0002-3488-2625"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fukumizu, Kenji","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9806,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9806,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9667,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hyperparameter","display_name":"Hyperparameter","score":0.8654907},{"id":"https://openalex.org/keywords/spurious-relationship","display_name":"Spurious relationship","score":0.6181832},{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.5849935},{"id":"https://openalex.org/keywords/labeled-data","display_name":"Labeled data","score":0.4442702}],"concepts":[{"id":"https://openalex.org/C8642999","wikidata":"https://www.wikidata.org/wiki/Q4171168","display_name":"Hyperparameter","level":2,"score":0.8654907},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7201957},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.697466},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6697191},{"id":"https://openalex.org/C97256817","wikidata":"https://www.wikidata.org/wiki/Q1462316","display_name":"Spurious relationship","level":2,"score":0.6181832},{"id":"https://openalex.org/C55439883","wikidata":"https://www.wikidata.org/wiki/Q360812","display_name":"Correctness","level":2,"score":0.58878475},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.5849935},{"id":"https://openalex.org/C190470478","wikidata":"https://www.wikidata.org/wiki/Q2370229","display_name":"Invariant (physics)","level":2,"score":0.516177},{"id":"https://openalex.org/C2776145971","wikidata":"https://www.wikidata.org/wiki/Q30673951","display_name":"Labeled data","level":2,"score":0.4442702},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.43167335},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.16682088},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.15506783},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C37914503","wikidata":"https://www.wikidata.org/wiki/Q156495","display_name":"Mathematical physics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.15549","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2203.15549","pdf_url":"http://arxiv.org/pdf/2203.15549","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2203.15549","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.15549","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W941090075","https://openalex.org/W4311248832","https://openalex.org/W4288358396","https://openalex.org/W3134374554","https://openalex.org/W3113091479","https://openalex.org/W2519167559","https://openalex.org/W2237480245","https://openalex.org/W2162899405","https://openalex.org/W2075065631","https://openalex.org/W2044987316"],"abstract_inverted_index":{"Deep":[0],"Neural":[1],"Networks":[2],"inherit":[3],"spurious":[4],"correlations":[5],"embedded":[6],"in":[7,31,47,69,130,159],"training":[8,45,67,128],"data":[9,46,68,99,129],"and":[10,175],"hence":[11],"may":[12],"fail":[13],"to":[14,40,58,91,146],"predict":[15],"desired":[16],"labels":[17],"on":[18],"unseen":[19],"domains":[20,71,102],"(or":[21],"environments),":[22],"which":[23,111,153],"have":[24],"different":[25],"distributions":[26],"from":[27,100],"the":[28,64,96,112,123,148,166,170,176,179],"domain":[29],"used":[30],"training.":[32],"Invariance":[33],"Learning":[34],"(IL)":[35],"has":[36,154],"been":[37,156],"developed":[38],"recently":[39],"overcome":[41,92],"this":[42,93],"shortcoming;":[43],"using":[44],"many":[48],"domains,":[49],"IL":[50,89,161],"estimates":[51],"such":[52],"a":[53,59,73,87,104,131],"predictor":[54,121],"that":[55],"is":[56,72,115,172,182],"invariant":[57,120],"change":[60],"of":[61,66,76,98,107,143,150,165,178],"domain.":[62,133],"However,":[63],"requirement":[65],"multiple":[70,101],"strong":[74],"restriction":[75],"IL,":[77],"since":[78],"it":[79],"often":[80],"needs":[81],"high":[82],"annotation":[83],"cost.":[84],"We":[85],"propose":[86,136],"novel":[88],"framework":[90],"problem.":[94],"Assuming":[95],"availability":[97],"for":[103,110,122,140],"higher":[105],"level":[106],"classification":[108,125],"task,":[109],"labeling":[113],"cost":[114],"low,":[116],"we":[117,135],"estimate":[118],"an":[119],"target":[124],"task":[126],"with":[127],"single":[132],"Additionally,":[134],"two":[137],"cross-validation":[138],"methods":[139],"selecting":[141],"hyperparameters":[142],"invariance":[144],"regularization":[145],"solve":[147],"issue":[149],"hyperparameter":[151,180],"selection,":[152],"not":[155],"handled":[157],"properly":[158],"existing":[160],"methods.":[162],"The":[163],"effectiveness":[164],"proposed":[167],"framework,":[168],"including":[169],"cross-validation,":[171],"demonstrated":[173],"empirically,":[174],"correctness":[177],"selection":[181],"proved":[183],"under":[184],"some":[185],"conditions.":[186]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4226069987","counts_by_year":[],"updated_date":"2024-12-07T04:41:51.461168","created_date":"2022-05-05"}