{"id":"https://openalex.org/W4221164097","doi":"https://doi.org/10.48550/arxiv.2203.14308","title":"Temporal Transductive Inference for Few-Shot Video Object Segmentation","display_name":"Temporal Transductive Inference for Few-Shot Video Object Segmentation","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4221164097","doi":"https://doi.org/10.48550/arxiv.2203.14308"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.14308","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2203.14308","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5022335103","display_name":"Mennatullah Siam","orcid":"https://orcid.org/0000-0003-1854-3698"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Siam, Mennatullah","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5111900659","display_name":"Konstantinos G. Derpanis","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Derpanis, Konstantinos G.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5089232277","display_name":"Richard P. Wildes","orcid":"https://orcid.org/0000-0003-3433-1329"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wildes, Richard P.","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":5,"citation_normalized_percentile":{"value":0.824796,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":81,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13114","display_name":"Image Processing Techniques and Applications","score":0.9915,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9851,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/overfitting","display_name":"Overfitting","score":0.800616}],"concepts":[{"id":"https://openalex.org/C22019652","wikidata":"https://www.wikidata.org/wiki/Q331309","display_name":"Overfitting","level":3,"score":0.800616},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7329279},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7284213},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.69663596},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.6018406},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5304961},{"id":"https://openalex.org/C2776036281","wikidata":"https://www.wikidata.org/wiki/Q48769818","display_name":"Constraint (computer-aided design)","level":2,"score":0.4819417},{"id":"https://openalex.org/C2781181686","wikidata":"https://www.wikidata.org/wiki/Q4226068","display_name":"Coherence (philosophical gambling strategy)","level":2,"score":0.46899322},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.46248466},{"id":"https://openalex.org/C137105694","wikidata":"https://www.wikidata.org/wiki/Q3407510","display_name":"Local consistency","level":4,"score":0.43195927},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.36906326},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.33742225},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.153357},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C44616089","wikidata":"https://www.wikidata.org/wiki/Q30158686","display_name":"Constraint satisfaction","level":3,"score":0.0},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.0},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.14308","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2203.14308","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.14308","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3154160056","https://openalex.org/W2611003898","https://openalex.org/W2610525591","https://openalex.org/W2381224930","https://openalex.org/W2178697489","https://openalex.org/W2171997565","https://openalex.org/W2145696022","https://openalex.org/W2044707813","https://openalex.org/W1598652458","https://openalex.org/W1510768092"],"abstract_inverted_index":{"Few-shot":[0],"video":[1,8,43],"object":[2,154],"segmentation":[3],"(FS-VOS)":[4],"aims":[5],"at":[6],"segmenting":[7],"frames":[9,44],"using":[10],"a":[11,27,98,164],"few":[12],"labelled":[13,151],"examples":[14],"of":[15,55,64,88,133,189],"classes":[16,76],"not":[17],"seen":[18],"during":[19,45,108],"initial":[20],"training.":[21],"In":[22,142],"this":[23],"paper,":[24],"we":[25,144],"present":[26,163],"simple":[28],"but":[29],"effective":[30],"temporal":[31,38,60,100,114,196],"transductive":[32,110],"inference":[33,111],"(TTI)":[34],"approach":[35,51],"that":[36,148,169],"leverages":[37],"consistency":[39],"in":[40,91,131],"the":[41,53,65,78,82,86,109,120,159,186,190],"unlabelled":[42],"few-shot":[46,121],"inference.":[47],"Key":[48],"to":[49,69,94,112,194],"our":[50,125],"is":[52,68],"use":[54],"both":[56],"global":[57,66],"and":[58,116,162,176,182,198],"local":[59,83,99],"constraints.":[61],"The":[62],"objective":[63],"constraint":[67,84],"learn":[70],"consistent":[71],"linear":[72],"classifiers":[73],"for":[74],"novel":[75],"across":[77,97],"image":[79],"sequence,":[80],"whereas":[81],"enforces":[85],"proportion":[87],"foreground/background":[89],"regions":[90],"each":[92],"frame":[93],"be":[95],"coherent":[96],"window.":[101],"These":[102],"constraints":[103],"act":[104],"as":[105],"spatiotemporal":[106,192],"regularizers":[107,193],"increase":[113],"coherence":[115,197],"reduce":[117],"overfitting":[118,201],"on":[119,138],"support":[122],"set.":[123],"Empirically,":[124],"model":[126],"outperforms":[127],"state-of-the-art":[128],"meta-learning":[129],"approaches":[130],"terms":[132],"mean":[134],"intersection":[135],"over":[136],"union":[137],"YouTube-VIS":[139],"by":[140],"2.8%.":[141],"addition,":[143],"introduce":[145],"improved":[146],"benchmarks":[147],"are":[149,156],"exhaustively":[150],"(i.e.":[152],"all":[153],"occurrences":[155],"labelled,":[157],"unlike":[158],"currently":[160],"available),":[161],"more":[165],"realistic":[166],"evaluation":[167],"paradigm":[168],"targets":[170],"data":[171],"distribution":[172],"shift":[173],"between":[174],"training":[175],"testing":[177],"sets.":[178],"Our":[179],"empirical":[180],"results":[181],"in-depth":[183],"analysis":[184],"confirm":[185],"added":[187],"benefits":[188],"proposed":[191],"improve":[195],"overcome":[199],"certain":[200],"scenarios.":[202]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4221164097","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":4}],"updated_date":"2025-04-24T12:06:53.167175","created_date":"2022-04-03"}