{"id":"https://openalex.org/W4221166063","doi":"https://doi.org/10.48550/arxiv.2203.14092","title":"A large scale multi-view RGBD visual affordance learning dataset","display_name":"A large scale multi-view RGBD visual affordance learning dataset","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4221166063","doi":"https://doi.org/10.48550/arxiv.2203.14092"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.14092","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2203.14092","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5041793324","display_name":"Zeyad Khalifa","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Khalifa, Zeyad Osama","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5103016460","display_name":"Syed Afaq Ali Shah","orcid":"https://orcid.org/0000-0002-8617-0961"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shah, Syed Afaq Ali","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T13114","display_name":"Image Processing Techniques and Applications","score":0.9944,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T13114","display_name":"Image Processing Techniques and Applications","score":0.9944,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.9911,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10653","display_name":"Robot Manipulation and Learning","score":0.9873,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/affordance","display_name":"Affordance","score":0.9616905},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.5872729},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.49360812},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.47507805}],"concepts":[{"id":"https://openalex.org/C194995250","wikidata":"https://www.wikidata.org/wiki/Q531136","display_name":"Affordance","level":2,"score":0.9616905},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7761773},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7236523},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.6561911},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.6103301},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.5872729},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.54694825},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.49360812},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.47507805},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.40595073},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.37065},{"id":"https://openalex.org/C107457646","wikidata":"https://www.wikidata.org/wiki/Q207434","display_name":"Human\u2013computer interaction","level":1,"score":0.17189556},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.14092","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2203.14092","pdf_url":"http://arxiv.org/pdf/2203.14092","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2203.14092","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.14092","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4312417841","https://openalex.org/W4226493464","https://openalex.org/W3193565141","https://openalex.org/W3167935049","https://openalex.org/W3133861977","https://openalex.org/W3103566983","https://openalex.org/W3048601286","https://openalex.org/W3029198973","https://openalex.org/W2965925734","https://openalex.org/W2951211570"],"abstract_inverted_index":{"The":[0,196],"physical":[1],"and":[2,14,40,51,64,75,90,133,150,157,172,185,191],"textural":[3],"attributes":[4],"of":[5,21,108,125,182],"objects":[6],"have":[7,28],"been":[8,29],"widely":[9],"studied":[10],"for":[11,31,41,71,86,147,169,189],"recognition,":[12,73],"detection":[13,74],"segmentation":[15,149,173],"tasks":[16,152],"in":[17],"computer":[18],"vision.~A":[19],"number":[20],"datasets,":[22],"such":[23],"as":[24],"large":[25,84,98],"scale":[26,99],"ImageNet,":[27],"proposed":[30,145],"feature":[32,43],"learning":[33,104,140,164,194],"using":[34,153],"data":[35],"hungry":[36],"deep":[37,163],"neural":[38],"networks":[39,165],"hand-crafted":[42],"extraction.":[44],"To":[45,77,122],"intelligently":[46],"interact":[47],"with":[48,117],"objects,":[49],"robots":[50],"intelligent":[52],"machines":[53],"need":[54],"the":[55,60,123,130,134,144,179,183],"ability":[56],"to":[57],"infer":[58],"beyond":[59],"traditional":[61],"physical/textural":[62],"attributes,":[63],"understand/learn":[65],"visual":[66,69,87,102,119,138],"cues,":[67],"called":[68],"affordances,":[70],"affordance":[72,88,103,120,139,148,170,193],"segmentation.":[76],"date":[78],"there":[79],"is":[80,129,198],"no":[81],"publicly":[82,199],"available":[83,200],"dataset":[85,146,184,197],"understanding":[89],"learning.":[91],"In":[92],"this":[93,128],"paper,":[94],"we":[95],"introduce":[96],"a":[97,106],"multi-view":[100,136],"RGBD":[101,110,137],"dataset,":[105],"benchmark":[107,143],"47210":[109],"images":[111],"from":[112],"37":[113],"object":[114],"categories,":[115],"annotated":[116],"15":[118],"categories.":[121],"best":[124],"our":[126],"knowledge,":[127],"first":[131],"ever":[132],"largest":[135],"dataset.":[141],"We":[142],"recognition":[151,171],"popular":[154],"Vision":[155],"Transformer":[156],"Convolutional":[158],"Neural":[159],"Networks.":[160],"Several":[161],"state-of-the-art":[162],"are":[166],"evaluated":[167],"each":[168],"tasks.":[174],"Our":[175],"experimental":[176],"results":[177],"showcase":[178],"challenging":[180],"nature":[181],"present":[186],"definite":[187],"prospects":[188],"new":[190],"robust":[192],"algorithms.":[195],"at":[201],"https://sites.google.com/view/afaqshah/dataset.":[202]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4221166063","counts_by_year":[],"updated_date":"2025-01-24T03:31:15.208838","created_date":"2022-04-03"}