{"id":"https://openalex.org/W4226288079","doi":"https://doi.org/10.48550/arxiv.2203.14082","title":"Metropolis-Hastings Data Augmentation for Graph Neural Networks","display_name":"Metropolis-Hastings Data Augmentation for Graph Neural Networks","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4226288079","doi":"https://doi.org/10.48550/arxiv.2203.14082"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.14082","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2203.14082","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5114859505","display_name":"Hyeonjin Park","orcid":"https://orcid.org/0000-0002-3439-8710"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Park, Hyeonjin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100428037","display_name":"Seunghun Lee","orcid":"https://orcid.org/0000-0001-9377-2832"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lee, Seunghun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102947860","display_name":"Sihyeon Kim","orcid":"https://orcid.org/0009-0005-4617-2507"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kim, Sihyeon","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100428885","display_name":"Jinyoung Park","orcid":"https://orcid.org/0000-0001-6913-7556"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Park, Jinyoung","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5031027762","display_name":"Jisu Jeong","orcid":"https://orcid.org/0000-0003-3614-4199"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jeong, Jisu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100332068","display_name":"Kyung-Min Kim","orcid":"https://orcid.org/0000-0003-0438-7612"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kim, Kyung-Min","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074393185","display_name":"Jung-Woo Ha","orcid":"https://orcid.org/0000-0002-7400-7681"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ha, Jung-Woo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5084814930","display_name":"Hyunwoo J. Kim","orcid":"https://orcid.org/0000-0002-2181-9264"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kim, Hyunwoo J.","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":9,"citation_normalized_percentile":{"value":0.949807,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9849,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9832,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/sequence","display_name":"Sequence (biology)","score":0.45309076}],"concepts":[{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.74005455},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.67346287},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.55964684},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.52374625},{"id":"https://openalex.org/C140779682","wikidata":"https://www.wikidata.org/wiki/Q210868","display_name":"Sampling (signal processing)","level":3,"score":0.45683616},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.45682386},{"id":"https://openalex.org/C2778112365","wikidata":"https://www.wikidata.org/wiki/Q3511065","display_name":"Sequence (biology)","level":2,"score":0.45309076},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.35360366},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.20574951},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.0},{"id":"https://openalex.org/C54355233","wikidata":"https://www.wikidata.org/wiki/Q7162","display_name":"Genetics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.14082","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2203.14082","pdf_url":"http://arxiv.org/pdf/2203.14082","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2203.14082","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.14082","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W43109613","https://openalex.org/W4200527723","https://openalex.org/W3162204513","https://openalex.org/W3083152911","https://openalex.org/W3022347918","https://openalex.org/W2371138613","https://openalex.org/W2359952343","https://openalex.org/W2239445980","https://openalex.org/W2080152487","https://openalex.org/W2048963458"],"abstract_inverted_index":{"Graph":[0],"Neural":[1],"Networks":[2],"(GNNs)":[3],"often":[4],"suffer":[5],"from":[6,74,89,107,137],"weak-generalization":[7],"due":[8,38],"to":[9,27,39,119,152,156],"sparsely":[10],"labeled":[11],"data":[12,44],"despite":[13],"their":[14],"promising":[15],"results":[16],"on":[17,54],"various":[18],"graph-based":[19],"tasks.":[20],"Data":[21,67],"augmentation":[22,53],"is":[23,56,112],"a":[24,63,84,127,147],"prevalent":[25],"remedy":[26],"improve":[28,158],"the":[29,40,47,90,97,104,108,116,121,153,159],"generalization":[30],"ability":[31],"of":[32,43,86,96,101,149,161],"models":[33],"in":[34],"many":[35],"domains.":[36],"However,":[37],"non-Euclidean":[41],"nature":[42],"space":[45],"and":[46,99,129],"dependencies":[48],"between":[49],"samples,":[50],"designing":[51],"effective":[52,130],"graphs":[55,73,88],"challenging.":[57],"In":[58],"this":[59],"paper,":[60],"we":[61,114],"propose":[62,126],"novel":[64],"framework":[65],"Metropolis-Hastings":[66,117],"Augmentation":[68],"(MH-Aug)":[69],"that":[70,143],"draws":[71],"augmented":[72,87,122],"an":[75],"explicit":[76],"target":[77,91,110,154],"distribution":[78,92,111,155],"for":[79],"semi-supervised":[80,131],"learning.":[81],"MH-Aug":[82,144],"produces":[83],"sequence":[85,148],"enables":[93],"flexible":[94],"control":[95],"strength":[98],"diversity":[100],"augmentation.":[102],"Since":[103],"direct":[105],"sampling":[106],"complex":[109],"challenging,":[113],"adopt":[115],"algorithm":[118],"obtain":[120],"samples.":[123],"We":[124],"also":[125],"simple":[128],"learning":[132],"strategy":[133],"with":[134],"generated":[135],"samples":[136,150],"MH-Aug.":[138],"Our":[139],"extensive":[140],"experiments":[141],"demonstrate":[142],"can":[145],"generate":[146],"according":[151],"significantly":[157],"performance":[160],"GNNs.":[162]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4226288079","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":2}],"updated_date":"2025-04-08T23:29:13.524042","created_date":"2022-05-05"}