{"id":"https://openalex.org/W4221144874","doi":"https://doi.org/10.48550/arxiv.2203.12485","title":"CroMo: Cross-Modal Learning for Monocular Depth Estimation","display_name":"CroMo: Cross-Modal Learning for Monocular Depth Estimation","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4221144874","doi":"https://doi.org/10.48550/arxiv.2203.12485"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.12485","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2203.12485","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5072008141","display_name":"Yannick Verdi\u00e9","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Verdi\u00e9, Yannick","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5046874089","display_name":"Jifei Song","orcid":"https://orcid.org/0000-0002-3381-6685"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Song, Jifei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5081146822","display_name":"Barnab\u00e9 Mas","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mas, Barnab\u00e9","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067135033","display_name":"Benjamin Busam","orcid":"https://orcid.org/0000-0002-0620-5774"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Busam, Benjamin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5085971943","display_name":"Ale\u0161 Leonardis","orcid":"https://orcid.org/0000-0003-0773-3277"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Leonardis, Ale\u0161","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5052824649","display_name":"Steven McDonagh","orcid":"https://orcid.org/0000-0001-7025-5197"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"McDonagh, Steven","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10638","display_name":"Optical measurement and interference techniques","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13114","display_name":"Image Processing Techniques and Applications","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/monocular","display_name":"Monocular","score":0.7526624},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.59989953},{"id":"https://openalex.org/keywords/modality","display_name":"Modality (human\u2013computer interaction)","score":0.5257488}],"concepts":[{"id":"https://openalex.org/C65909025","wikidata":"https://www.wikidata.org/wiki/Q1945033","display_name":"Monocular","level":2,"score":0.7526624},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.71601367},{"id":"https://openalex.org/C71139939","wikidata":"https://www.wikidata.org/wiki/Q910194","display_name":"Modal","level":2,"score":0.67844784},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6668327},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.59989953},{"id":"https://openalex.org/C2780226545","wikidata":"https://www.wikidata.org/wiki/Q6888030","display_name":"Modality (human\u2013computer interaction)","level":2,"score":0.5257488},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.5183826},{"id":"https://openalex.org/C43521106","wikidata":"https://www.wikidata.org/wiki/Q2165493","display_name":"Pipeline (software)","level":2,"score":0.5139627},{"id":"https://openalex.org/C1893757","wikidata":"https://www.wikidata.org/wiki/Q3653001","display_name":"Inversion (geology)","level":3,"score":0.43100244},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.324412},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.077414215},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C109007969","wikidata":"https://www.wikidata.org/wiki/Q749565","display_name":"Structural basin","level":2,"score":0.0},{"id":"https://openalex.org/C188027245","wikidata":"https://www.wikidata.org/wiki/Q750446","display_name":"Polymer chemistry","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.12485","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2203.12485","pdf_url":"http://arxiv.org/pdf/2203.12485","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2203.12485","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.12485","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W73545470","https://openalex.org/W627697492","https://openalex.org/W3037187668","https://openalex.org/W2530972254","https://openalex.org/W2385859805","https://openalex.org/W2374430585","https://openalex.org/W2374013449","https://openalex.org/W2364381299","https://openalex.org/W2032269556","https://openalex.org/W200819717"],"abstract_inverted_index":{"Learning-based":[0],"depth":[1,87,178],"estimation":[2,179],"has":[3],"witnessed":[4],"recent":[5],"progress":[6],"in":[7],"multiple":[8,36],"directions;":[9],"from":[10,35,73,88],"self-supervision":[11],"using":[12],"monocular":[13,89,177],"video":[14,155,161],"to":[15,22,26,64,142,174],"supervised":[16],"methods":[17],"offering":[18],"highest":[19],"accuracy.":[20],"Complementary":[21],"supervision,":[23],"further":[24],"boosts":[25],"performance":[27],"and":[28,49,76,110,113,116,136,150,166],"robustness":[29],"are":[30,172],"gained":[31],"by":[32],"combining":[33],"information":[34],"signals.":[37,97],"In":[38,119],"this":[39],"paper":[40],"we":[41,93,126,171],"systematically":[42],"investigate":[43],"key":[44],"trade-offs":[45],"associated":[46],"with":[47,108,130],"sensor":[48],"modality":[50],"design":[51],"choices":[52],"as":[53,55],"well":[54],"related":[56],"model":[57],"training":[58,96],"strategies.":[59],"Our":[60],"study":[61],"leads":[62],"us":[63],"a":[65,81,131],"new":[66],"method,":[67],"capable":[68,84],"of":[69,85,100,122,144],"connecting":[70],"modality-specific":[71],"advantages":[72,169],"polarisation,":[74,147],"Time-of-Flight":[75],"structured-light":[77,151],"inputs.":[78],"We":[79],"propose":[80],"novel":[82],"pipeline":[83,168],"estimating":[86],"polarisation":[90,109],"for":[91],"which":[92],"evaluate":[94],"various":[95],"The":[98],"inversion":[99],"differentiable":[101],"analytic":[102],"models":[103],"thereby":[104],"connects":[105],"scene":[106],"geometry":[107],"ToF":[111,149],"signals":[112],"enables":[114],"self-supervised":[115],"cross-modal":[117],"learning.":[118],"the":[120,139],"absence":[121],"existing":[123],"multimodal":[124],"datasets,":[125],"examine":[127],"our":[128],"approach":[129],"custom-made":[132],"multi-modal":[133],"camera":[134],"rig":[135],"collect":[137],"CroMo;":[138],"first":[140],"dataset":[141],"consist":[143],"synchronized":[145],"stereo":[146],"indirect":[148],"depth,":[152],"captured":[153],"at":[154],"rates.":[156],"Extensive":[157],"experiments":[158],"on":[159],"challenging":[160],"scenes":[162],"confirm":[163],"both":[164],"qualitative":[165],"quantitative":[167],"where":[170],"able":[173],"outperform":[175],"competitive":[176],"method.":[180]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4221144874","counts_by_year":[],"updated_date":"2025-01-08T07:58:00.189096","created_date":"2022-04-03"}