{"id":"https://openalex.org/W4221159071","doi":"https://doi.org/10.48550/arxiv.2203.11382","title":"Preference Exploration for Efficient Bayesian Optimization with Multiple Outcomes","display_name":"Preference Exploration for Efficient Bayesian Optimization with Multiple Outcomes","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4221159071","doi":"https://doi.org/10.48550/arxiv.2203.11382"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.11382","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"journal-article","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2203.11382","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5057291277","display_name":"Zhiyuan Lin","orcid":"https://orcid.org/0000-0003-3739-769X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lin, Zhiyuan Jerry","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5056730317","display_name":"Raul Astudillo","orcid":"https://orcid.org/0000-0002-6080-9798"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Astudillo, Raul","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039019367","display_name":"Peter I. Frazier","orcid":"https://orcid.org/0000-0002-3501-3341"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Frazier, Peter I.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5006700143","display_name":"Eytan Bakshy","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bakshy, Eytan","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.979142,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":79,"max":81},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10848","display_name":"Advanced Multi-Objective Optimization Algorithms","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10848","display_name":"Advanced Multi-Objective Optimization Algorithms","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.979,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9766,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/bayesian-optimization","display_name":"Bayesian Optimization","score":0.84532034},{"id":"https://openalex.org/keywords/preference-learning","display_name":"Preference learning","score":0.7371532},{"id":"https://openalex.org/keywords/preference-elicitation","display_name":"Preference Elicitation","score":0.42831233}],"concepts":[{"id":"https://openalex.org/C2778049539","wikidata":"https://www.wikidata.org/wiki/Q17002908","display_name":"Bayesian optimization","level":2,"score":0.84532034},{"id":"https://openalex.org/C2781249084","wikidata":"https://www.wikidata.org/wiki/Q908656","display_name":"Preference","level":2,"score":0.77001977},{"id":"https://openalex.org/C184898388","wikidata":"https://www.wikidata.org/wiki/Q1435712","display_name":"Pairwise comparison","level":2,"score":0.7675301},{"id":"https://openalex.org/C181204326","wikidata":"https://www.wikidata.org/wiki/Q7239820","display_name":"Preference learning","level":3,"score":0.7371532},{"id":"https://openalex.org/C148220186","wikidata":"https://www.wikidata.org/wiki/Q7111912","display_name":"Outcome (game theory)","level":2,"score":0.63242537},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.63022095},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.6292688},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.60159194},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5798916},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.54078794},{"id":"https://openalex.org/C2777868144","wikidata":"https://www.wikidata.org/wiki/Q7239817","display_name":"Preference elicitation","level":3,"score":0.42831233},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.32070458},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.1982004},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.09739238},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.09437221},{"id":"https://openalex.org/C144237770","wikidata":"https://www.wikidata.org/wiki/Q747534","display_name":"Mathematical economics","level":1,"score":0.053696245},{"id":"https://openalex.org/C201995342","wikidata":"https://www.wikidata.org/wiki/Q682496","display_name":"Systems engineering","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.11382","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2203.11382","pdf_url":"http://arxiv.org/pdf/2203.11382","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2203.11382","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.11382","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":null,"is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4324116389","https://openalex.org/W4243749125","https://openalex.org/W4206349327","https://openalex.org/W4206238124","https://openalex.org/W4200207182","https://openalex.org/W3126212998","https://openalex.org/W2060303324","https://openalex.org/W2025932902","https://openalex.org/W1562775108","https://openalex.org/W1515481220"],"abstract_inverted_index":{"We":[0],"consider":[1],"Bayesian":[2,55,79],"optimization":[3,56,80],"of":[4,46,86],"expensive-to-evaluate":[5],"experiments":[6],"that":[7,26,63],"generate":[8],"vector-valued":[9],"outcomes":[10],"over":[11,44],"which":[12],"a":[13,23,60,82],"decision-maker":[14],"(DM)":[15],"has":[16],"preferences.":[17],"These":[18],"preferences":[19,43],"are":[20],"encoded":[21],"by":[22,37],"utility":[24,88],"function":[25],"is":[27],"not":[28],"known":[29],"in":[30],"closed":[31],"form":[32],"but":[33],"can":[34],"be":[35],"estimated":[36],"asking":[38],"the":[39,71],"DM":[40,72,87],"to":[41],"express":[42],"pairs":[45],"outcome":[47],"vectors.":[48],"To":[49],"address":[50],"this":[51,92,102],"problem,":[52],"we":[53,94],"develop":[54],"with":[57,70,81],"preference":[58,68,96],"exploration,":[59],"novel":[61],"framework":[62],"alternates":[64],"between":[65,76],"interactive":[66],"real-time":[67],"learning":[69],"via":[73,108],"pairwise":[74],"comparisons":[75],"outcomes,":[77],"and":[78,89,104],"learned":[83],"compositional":[84],"model":[85],"outcomes.":[90],"Within":[91],"framework,":[93],"propose":[95],"exploration":[97],"strategies":[98],"specifically":[99],"designed":[100],"for":[101],"task,":[103],"demonstrate":[105],"their":[106],"performance":[107],"extensive":[109],"simulation":[110],"studies.":[111]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4221159071","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":1}],"updated_date":"2025-04-09T08:16:00.301273","created_date":"2022-04-03"}