{"id":"https://openalex.org/W4221138311","doi":"https://doi.org/10.48550/arxiv.2203.11379","title":"A Bayesian Deep Learning Technique for Multi-Step Ahead Solar Generation Forecasting","display_name":"A Bayesian Deep Learning Technique for Multi-Step Ahead Solar Generation Forecasting","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4221138311","doi":"https://doi.org/10.48550/arxiv.2203.11379"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.11379","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2203.11379","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5043162582","display_name":"Devinder Kaur","orcid":"https://orcid.org/0000-0002-1379-6592"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kaur, Devinder","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5007829488","display_name":"Shama Naz Islam","orcid":"https://orcid.org/0000-0002-2354-7960"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Islam, Shama Naz","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5047158642","display_name":"M. A. Mahmud","orcid":"https://orcid.org/0000-0002-5302-5338"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mahmud, Md. Apel","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.870099,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":80},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11276","display_name":"Machine Learning Methods for Solar Radiation Forecasting","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11276","display_name":"Machine Learning Methods for Solar Radiation Forecasting","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11052","display_name":"Electricity Price and Load Forecasting Methods","score":0.9951,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12368","display_name":"Application of Grey System Theory in Forecasting","score":0.9927,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.7067321},{"id":"https://openalex.org/keywords/short-term-forecasting","display_name":"Short-Term Forecasting","score":0.595567},{"id":"https://openalex.org/keywords/load-forecasting","display_name":"Load Forecasting","score":0.588866},{"id":"https://openalex.org/keywords/divergence","display_name":"Divergence (linguistics)","score":0.57773083},{"id":"https://openalex.org/keywords/forecasting-model-optimization","display_name":"Forecasting Model Optimization","score":0.560858},{"id":"https://openalex.org/keywords/forecasting","display_name":"Forecasting","score":0.560589},{"id":"https://openalex.org/keywords/probabilistic-forecasting","display_name":"Probabilistic Forecasting","score":0.557671}],"concepts":[{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.7067321},{"id":"https://openalex.org/C79337645","wikidata":"https://www.wikidata.org/wiki/Q779824","display_name":"Outlier","level":2,"score":0.6298282},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.60942316},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.60593593},{"id":"https://openalex.org/C207390915","wikidata":"https://www.wikidata.org/wiki/Q1230525","display_name":"Divergence (linguistics)","level":2,"score":0.57773083},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.5774274},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5195387},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.49021274},{"id":"https://openalex.org/C122282355","wikidata":"https://www.wikidata.org/wiki/Q7246855","display_name":"Probabilistic forecasting","level":3,"score":0.45221108},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.38033432},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.32653248},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.102739185},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.11379","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2203.11379","pdf_url":"http://arxiv.org/pdf/2203.11379","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2203.11379","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.11379","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.72,"display_name":"Affordable and clean energy","id":"https://metadata.un.org/sdg/7"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3188413760","https://openalex.org/W3121565704","https://openalex.org/W2987052531","https://openalex.org/W2963188571","https://openalex.org/W2909436466","https://openalex.org/W2791458617","https://openalex.org/W2769304616","https://openalex.org/W2561944894","https://openalex.org/W2373467473","https://openalex.org/W2008291043"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"we":[3],"propose":[4],"an":[5],"improved":[6],"Bayesian":[7,110,117],"bidirectional":[8],"long-short":[9],"term":[10],"memory":[11],"(BiLSTM)":[12],"neural":[13,50],"networks":[14],"for":[15,28,123],"multi-step":[16],"ahead":[17,85],"(MSA)":[18],"solar":[19,37,60],"generation":[20,38,61],"forecasting.":[21],"The":[22,52,102],"proposed":[23,53,96,109],"technique":[24],"applies":[25],"alpha-beta":[26,113],"divergence":[27,114],"a":[29,77],"more":[30],"appropriate":[31],"consideration":[32],"of":[33,43,94,128],"outliers":[34],"in":[35,48,126],"the":[36,44,49,83,92,95,108],"data":[39,62],"and":[40,73,82,119],"resulting":[41],"variability":[42],"weight":[45],"parameter":[46],"distribution":[47],"network.":[51],"method":[54,97],"is":[55,88],"examined":[56],"on":[57,98],"highly":[58],"granular":[59],"from":[63],"Ausgrid":[64],"using":[65],"probabilistic":[66],"evaluation":[67],"metrics":[68],"such":[69],"as":[70],"Pinball":[71],"loss":[72],"Winkler":[74],"score.":[75],"Moreover,":[76],"comparative":[78],"analysis":[79],"between":[80],"MSA":[81,124],"single-step":[84],"(SSA)":[86],"forecasting":[87,100,125],"provided":[89],"to":[90],"test":[91],"effectiveness":[93],"variable":[99],"horizons.":[101],"numerical":[103],"results":[104],"clearly":[105],"demonstrate":[106],"that":[107],"BiLSTM":[111,118],"with":[112],"outperforms":[115],"standard":[116],"other":[120],"benchmark":[121],"methods":[122],"terms":[127],"error":[129],"performance.":[130]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4221138311","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":1}],"updated_date":"2024-12-03T13:19:25.702707","created_date":"2022-04-03"}