{"id":"https://openalex.org/W4294863024","doi":"https://doi.org/10.48550/arxiv.2203.11199","title":"Distinguishing Non-natural from Natural Adversarial Samples for More Robust Pre-trained Language Model","display_name":"Distinguishing Non-natural from Natural Adversarial Samples for More Robust Pre-trained Language Model","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4294863024","doi":"https://doi.org/10.48550/arxiv.2203.11199"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.11199","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2203.11199","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100449263","display_name":"Jiayi Wang","orcid":"https://orcid.org/0000-0002-7785-3381"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Jiayi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055860272","display_name":"Rongzhou Bao","orcid":"https://orcid.org/0000-0003-0108-2143"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bao, Rongzhou","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5070962435","display_name":"Zhuosheng Zhang","orcid":"https://orcid.org/0000-0002-4183-3645"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Zhuosheng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100457332","display_name":"Hai Zhao","orcid":"https://orcid.org/0000-0002-3392-2584"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhao, Hai","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9702,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9702,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9412,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.88271135}],"concepts":[{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.93257236},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.88271135},{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.69238734},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.66602135},{"id":"https://openalex.org/C195324797","wikidata":"https://www.wikidata.org/wiki/Q33742","display_name":"Natural language","level":2,"score":0.56178916},{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.5399025},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5239213},{"id":"https://openalex.org/C2776608160","wikidata":"https://www.wikidata.org/wiki/Q4785462","display_name":"Natural (archaeology)","level":2,"score":0.4671848},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.37041485},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3607107},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.09777686},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.11199","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2203.11199","pdf_url":"http://arxiv.org/pdf/2203.11199","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2203.11199","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.11199","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.46,"display_name":"Quality education","id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4310988119","https://openalex.org/W4297672492","https://openalex.org/W4288019534","https://openalex.org/W4246396837","https://openalex.org/W3191453585","https://openalex.org/W3126451824","https://openalex.org/W3089357417","https://openalex.org/W2502115930","https://openalex.org/W2482350142","https://openalex.org/W1561927205"],"abstract_inverted_index":{"Recently,":[0],"the":[1,37,54,76,91,100,118,125,134],"problem":[2],"of":[3,5,56,59,61,78,90,120,136,146],"robustness":[4,60,77,135],"pre-trained":[6],"language":[7],"models":[8],"(PrLMs)":[9],"has":[10],"received":[11],"increasing":[12],"research":[13],"interest.":[14],"Latest":[15],"studies":[16],"on":[17,64,152],"adversarial":[18,38,67,83,154],"attacks":[19,147],"achieve":[20],"high":[21],"attack":[22],"success":[23],"rates":[24],"against":[25],"PrLMs,":[26],"claiming":[27],"that":[28,36,40,108],"PrLMs":[29,41,62,79],"are":[30,43,109],"not":[31,48],"robust.":[32],"However,":[33],"we":[34,98],"find":[35],"samples":[39,68,155,158],"fail":[42],"mostly":[44],"non-natural":[45,66],"and":[46,69,148,156],"do":[47],"appear":[49],"in":[50],"reality.":[51],"We":[52,85,123],"question":[53],"validity":[55],"current":[57],"evaluation":[58],"based":[63],"these":[65],"propose":[70],"an":[71],"anomaly":[72,92,101,126],"detector":[73,102,127],"to":[74,103,117,128,132,142],"evaluate":[75],"with":[80],"more":[81],"natural":[82],"samples.":[84],"also":[86],"investigate":[87],"two":[88],"applications":[89],"detector:":[93],"(1)":[94],"In":[95],"data":[96,107],"augmentation,":[97],"employ":[99],"force":[104],"generating":[105],"augmented":[106],"distinguished":[110],"as":[111],"non-natural,":[112],"which":[113],"brings":[114],"larger":[115],"gains":[116],"accuracy":[119,151],"PrLMs.":[121,137],"(2)":[122],"apply":[124],"a":[129],"defense":[130,161],"framework":[131],"enhance":[133],"It":[138],"can":[139],"be":[140],"used":[141],"defend":[143],"all":[144],"types":[145],"achieves":[149],"higher":[150],"both":[153],"compliant":[157],"than":[159],"other":[160],"frameworks.":[162]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4294863024","counts_by_year":[],"updated_date":"2025-03-04T16:01:13.185797","created_date":"2022-09-07"}