{"id":"https://openalex.org/W4221139162","doi":"https://doi.org/10.48550/arxiv.2203.09410","title":"A Framework and Benchmark for Deep Batch Active Learning for Regression","display_name":"A Framework and Benchmark for Deep Batch Active Learning for Regression","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4221139162","doi":"https://doi.org/10.48550/arxiv.2203.09410"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.09410","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"journal-article","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2203.09410","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5036807127","display_name":"David Holzm\u00fcller","orcid":"https://orcid.org/0000-0002-9443-0049"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Holzm\u00fcller, David","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047160329","display_name":"Viktor Zaverkin","orcid":"https://orcid.org/0000-0001-9940-8548"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zaverkin, Viktor","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5056979833","display_name":"Johannes K\u00e4stner","orcid":"https://orcid.org/0000-0001-6178-7669"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"K\u00e4stner, Johannes","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5001083977","display_name":"Ingo Steinwart","orcid":"https://orcid.org/0000-0002-4436-7109"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Steinwart, Ingo","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":11,"citation_normalized_percentile":{"value":0.953382,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":91,"max":92},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9914,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9857,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.74842304},{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.5190523},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.47196782}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.78195405},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.74842304},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.61491174},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6082489},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.55607754},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.5190523},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.47196782},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.45267084},{"id":"https://openalex.org/C81917197","wikidata":"https://www.wikidata.org/wiki/Q628760","display_name":"Selection (genetic algorithm)","level":2,"score":0.43633634},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.4263223},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.38229728},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.09841895},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.09410","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2203.09410","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.09410","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":null,"is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","score":0.42,"display_name":"Industry, innovation and infrastructure"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W972276598","https://openalex.org/W4321353415","https://openalex.org/W4246352526","https://openalex.org/W2745001401","https://openalex.org/W2378211422","https://openalex.org/W2130974462","https://openalex.org/W2121910908","https://openalex.org/W2087343574","https://openalex.org/W2086519370","https://openalex.org/W2028665553"],"abstract_inverted_index":{"The":[0],"acquisition":[1],"of":[2,15,28,42,63,106,146],"labels":[3],"for":[4,31,37,158],"supervised":[5],"learning":[6,22],"can":[7,155],"be":[8,156],"expensive.":[9],"To":[10,96],"improve":[11],"the":[12,76,117,132],"sample":[13],"efficiency":[14],"neural":[16,64,84],"network":[17,133],"regression,":[18],"we":[19,72,100],"study":[20],"active":[21],"methods":[23,40,57],"that":[24,142],"adaptively":[25],"select":[26],"batches":[27],"unlabeled":[29],"data":[30,111,125],"labeling.":[32],"We":[33,138],"present":[34],"a":[35,92],"framework":[36,52],"constructing":[38],"such":[39],"out":[41],"(network-dependent)":[43],"base":[44],"kernels,":[45,148],"kernel":[46,149],"transformations,":[47,150],"and":[48,87,127,151,154],"selection":[49,152],"methods.":[50,70],"Our":[51,113],"encompasses":[53],"many":[54],"existing":[55],"Bayesian":[56],"based":[58],"on":[59,119],"Gaussian":[60],"process":[61],"approximations":[62],"networks":[65],"as":[66,68],"well":[67],"non-Bayesian":[69],"Additionally,":[71],"propose":[73],"to":[74,88,123],"replace":[75],"commonly":[77],"used":[78,157],"last-layer":[79],"features":[80],"with":[81,91],"sketched":[82],"finite-width":[83],"tangent":[85],"kernels":[86],"combine":[89],"them":[90],"novel":[93],"clustering":[94],"method.":[95],"evaluate":[97],"different":[98],"methods,":[99,153],"introduce":[101],"an":[102],"open-source":[103,140],"benchmark":[104],"consisting":[105],"15":[107],"large":[108,124],"tabular":[109],"regression":[110],"sets.":[112],"proposed":[114],"method":[115],"outperforms":[116],"state-of-the-art":[118],"our":[120,160],"benchmark,":[121],"scales":[122],"sets,":[126],"works":[128],"out-of-the-box":[129],"without":[130],"adjusting":[131],"architecture":[134],"or":[135],"training":[136],"code.":[137],"provide":[139],"code":[141],"includes":[143],"efficient":[144],"implementations":[145],"all":[147],"reproducing":[159],"results.":[161]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4221139162","counts_by_year":[{"year":2024,"cited_by_count":6},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":1}],"updated_date":"2025-01-20T18:13:10.217180","created_date":"2022-04-03"}