{"id":"https://openalex.org/W4226471664","doi":"https://doi.org/10.48550/arxiv.2203.09035","title":"HybridNets: End-to-End Perception Network","display_name":"HybridNets: End-to-End Perception Network","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4226471664","doi":"https://doi.org/10.48550/arxiv.2203.09035"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.09035","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2203.09035","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5015371708","display_name":"Dat Vu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Vu, Dat","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055120608","display_name":"Bao Ngo","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ngo, Bao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5087304949","display_name":"Hung M. Phan","orcid":"https://orcid.org/0000-0002-5053-3054"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Phan, Hung","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":62,"citation_normalized_percentile":{"value":0.999846,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11099","display_name":"Autonomous Vehicle Technology and Safety","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9765,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/end-to-end-principle","display_name":"End-to-end principle","score":0.77359426},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.49779367},{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.47526306},{"id":"https://openalex.org/keywords/backbone-network","display_name":"Backbone network","score":0.45858762}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.80971956},{"id":"https://openalex.org/C74296488","wikidata":"https://www.wikidata.org/wiki/Q2527392","display_name":"End-to-end principle","level":2,"score":0.77359426},{"id":"https://openalex.org/C64543145","wikidata":"https://www.wikidata.org/wiki/Q162942","display_name":"Intersection (aeronautics)","level":2,"score":0.6164561},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.5288269},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5286249},{"id":"https://openalex.org/C26760741","wikidata":"https://www.wikidata.org/wiki/Q160402","display_name":"Perception","level":2,"score":0.5231472},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.49779367},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.47526306},{"id":"https://openalex.org/C88796919","wikidata":"https://www.wikidata.org/wiki/Q1142907","display_name":"Backbone network","level":2,"score":0.45858762},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.4137147},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.34174725},{"id":"https://openalex.org/C79403827","wikidata":"https://www.wikidata.org/wiki/Q3988","display_name":"Real-time computing","level":1,"score":0.3246522},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.10721713},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.09699619},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.09237021},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C169760540","wikidata":"https://www.wikidata.org/wiki/Q207011","display_name":"Neuroscience","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.09035","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2203.09035","pdf_url":"http://arxiv.org/pdf/2203.09035","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2203.09035","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.09035","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4303926741","https://openalex.org/W4292672442","https://openalex.org/W4200172193","https://openalex.org/W3200590620","https://openalex.org/W3179968364","https://openalex.org/W3173456895","https://openalex.org/W2938107654","https://openalex.org/W2894651257","https://openalex.org/W2348909947","https://openalex.org/W1999612375"],"abstract_inverted_index":{"End-to-end":[0],"Network":[1],"has":[2],"become":[3],"increasingly":[4],"important":[5],"in":[6,22,70,165],"multi-tasking.":[7],"One":[8],"prominent":[9],"example":[10],"of":[11,17],"this":[12],"is":[13,169,180],"the":[14,44,61,71,77,176],"growing":[15],"significance":[16],"a":[18,170],"driving":[19],"perception":[20,31,102,163],"system":[21],"autonomous":[23],"driving.":[24],"This":[25],"paper":[26,45,62,78],"systematically":[27],"studies":[28],"an":[29,80,100],"end-to-end":[30,101],"network":[32,103],"for":[33,67],"multi-tasking":[34,177],"and":[35,50,85,90,114,152,167,172],"proposes":[36,46,63,79],"several":[37],"key":[38],"optimizations":[39],"to":[40,88,104,175],"improve":[41],"accuracy.":[42],"First,":[43],"efficient":[47,81],"segmentation":[48,113],"head":[49],"box/class":[51],"prediction":[52],"networks":[53],"based":[54],"on":[55,94,135],"weighted":[56,72],"bidirectional":[57,73],"feature":[58,74],"network.":[59,75,92],"Second,":[60],"automatically":[64],"customized":[65],"anchor":[66],"each":[68],"level":[69],"Third,":[76],"training":[82,86],"loss":[83],"function":[84],"strategy":[87],"balance":[89],"optimize":[91],"Based":[93],"these":[95],"optimizations,":[96],"we":[97],"have":[98],"developed":[99],"perform":[105,161],"multi-tasking,":[106],"including":[107],"traffic":[108],"object":[109],"detection,":[110],"drivable":[111],"area":[112],"lane":[115,140],"detection":[116,141],"simultaneously,":[117],"called":[118],"HybridNets,":[119],"which":[120],"achieves":[121,130],"better":[122],"accuracy":[123],"than":[124],"prior":[125],"art.":[126],"In":[127,157],"particular,":[128],"HybridNets":[129],"77.3":[131],"mean":[132,144],"Average":[133],"Precision":[134],"Berkeley":[136],"DeepDrive":[137],"Dataset,":[138],"outperforms":[139],"with":[142,148],"31.6":[143],"Intersection":[145],"Over":[146],"Union":[147],"12.83":[149],"million":[150],"parameters":[151],"15.6":[153],"billion":[154],"floating-point":[155],"operations.":[156],"addition,":[158],"it":[159],"can":[160],"visual":[162],"tasks":[164],"real-time":[166],"thus":[168],"practical":[171],"accurate":[173],"solution":[174],"problem.":[178],"Code":[179],"available":[181],"at":[182],"https://github.com/datvuthanh/HybridNets.":[183]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4226471664","counts_by_year":[{"year":2025,"cited_by_count":2},{"year":2024,"cited_by_count":22},{"year":2023,"cited_by_count":33},{"year":2022,"cited_by_count":5}],"updated_date":"2025-04-05T19:31:34.439149","created_date":"2022-05-05"}