{"id":"https://openalex.org/W4225751042","doi":"https://doi.org/10.48550/arxiv.2203.07728","title":"Securing the Classification of COVID-19 in Chest X-ray Images: A Privacy-Preserving Deep Learning Approach","display_name":"Securing the Classification of COVID-19 in Chest X-ray Images: A Privacy-Preserving Deep Learning Approach","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4225751042","doi":"https://doi.org/10.48550/arxiv.2203.07728"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.07728","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2203.07728","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5042123158","display_name":"Wadii Boulila","orcid":"https://orcid.org/0000-0003-2133-0757"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Boulila, Wadii","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5014758459","display_name":"Adel Ammar","orcid":"https://orcid.org/0000-0003-0795-132X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ammar, Adel","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5085663479","display_name":"Bilel Benjdira","orcid":"https://orcid.org/0000-0002-3057-4924"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Benjdira, Bilel","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5024626195","display_name":"Anis Koub\u00e2a","orcid":"https://orcid.org/0000-0003-3787-7423"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Koubaa, Anis","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.71693,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":60,"max":70},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9921,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9453,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/homomorphic-encryption","display_name":"Homomorphic Encryption","score":0.9309932}],"concepts":[{"id":"https://openalex.org/C158338273","wikidata":"https://www.wikidata.org/wiki/Q2154943","display_name":"Homomorphic encryption","level":3,"score":0.9309932},{"id":"https://openalex.org/C148730421","wikidata":"https://www.wikidata.org/wiki/Q141090","display_name":"Encryption","level":2,"score":0.7692744},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.6845664},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6471404},{"id":"https://openalex.org/C3008058167","wikidata":"https://www.wikidata.org/wiki/Q84263196","display_name":"Coronavirus disease 2019 (COVID-19)","level":4,"score":0.5933817},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.47708806},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.42802584},{"id":"https://openalex.org/C123201435","wikidata":"https://www.wikidata.org/wiki/Q456632","display_name":"Information privacy","level":2,"score":0.41554585},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.41283387},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.2154502},{"id":"https://openalex.org/C142724271","wikidata":"https://www.wikidata.org/wiki/Q7208","display_name":"Pathology","level":1,"score":0.090034425},{"id":"https://openalex.org/C2779134260","wikidata":"https://www.wikidata.org/wiki/Q12136","display_name":"Disease","level":2,"score":0.0},{"id":"https://openalex.org/C524204448","wikidata":"https://www.wikidata.org/wiki/Q788926","display_name":"Infectious disease (medical specialty)","level":3,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.07728","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2203.07728","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.07728","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W45120566","https://openalex.org/W4393118461","https://openalex.org/W4390664647","https://openalex.org/W3129970818","https://openalex.org/W3012147850","https://openalex.org/W2773194476","https://openalex.org/W2767997441","https://openalex.org/W2539930818","https://openalex.org/W2375981391","https://openalex.org/W2361408597"],"abstract_inverted_index":{"Deep":[0],"learning":[1,63],"(DL)":[2],"is":[3,99],"being":[4],"increasingly":[5,42],"utilized":[6],"in":[7],"healthcare-related":[8],"fields":[9],"due":[10],"to":[11,18,66,77,82],"its":[12],"outstanding":[13],"efficiency.":[14],"However,":[15],"we":[16,59],"have":[17],"keep":[19],"the":[20,35,48,68,88,91,105,113,117,123,129,138,144],"individual":[21],"health":[22],"data":[23,32,92,140],"used":[24],"by":[25],"DL":[26,49,114],"models":[27],"private":[28],"and":[29,33,50,111,141],"secure.":[30],"Protecting":[31],"preserving":[34],"privacy":[36,51,89],"of":[37,70,90,135],"individuals":[38],"has":[39],"become":[40],"an":[41,133],"prevalent":[43],"issue.":[44],"The":[45,96],"gap":[46],"between":[47],"communities":[52],"must":[53],"be":[54],"bridged.":[55],"In":[56],"this":[57],"paper,":[58],"propose":[60],"privacy-preserving":[61],"deep":[62],"(PPDL)-based":[64],"approach":[65,98],"secure":[67],"classification":[69],"Chest":[71,79],"X-ray":[72,80],"images.":[73,119],"This":[74],"study":[75],"aims":[76],"use":[78],"images":[81],"their":[83],"fullest":[84],"potential":[85],"without":[86],"compromising":[87],"that":[93,128],"it":[94],"contains.":[95],"proposed":[97],"based":[100],"on":[101,122],"two":[102],"steps:":[103],"encrypting":[104],"dataset":[106],"using":[107],"partially":[108],"homomorphic":[109],"encryption":[110],"training/testing":[112],"algorithm":[115],"over":[116,137,143],"encrypted":[118,145],"Experimental":[120],"results":[121],"COVID-19":[124],"Radiography":[125],"database":[126],"show":[127],"MobileNetV2":[130],"model":[131],"achieves":[132],"accuracy":[134],"94.2%":[136],"plain":[139],"93.3%":[142],"data.":[146]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4225751042","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2024-12-14T21:35:34.316941","created_date":"2022-05-05"}