{"id":"https://openalex.org/W4226070742","doi":"https://doi.org/10.48550/arxiv.2203.06823","title":"SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image Labels for Quantitative Clinical Evaluation","display_name":"SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image Labels for Quantitative Clinical Evaluation","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4226070742","doi":"https://doi.org/10.48550/arxiv.2203.06823"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.06823","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2203.06823","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5062564649","display_name":"Arjun Desai","orcid":"https://orcid.org/0000-0003-0645-3257"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Desai, Arjun D","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077119830","display_name":"Andrew Schmidt","orcid":"https://orcid.org/0000-0003-3826-6122"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Schmidt, Andrew M","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5056379035","display_name":"Elka Rubin","orcid":"https://orcid.org/0000-0003-0175-7657"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Rubin, Elka B","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5064285808","display_name":"Christopher M. Sandino","orcid":"https://orcid.org/0000-0002-8360-0153"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sandino, Christopher M","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5016582086","display_name":"Marianne S. Black","orcid":"https://orcid.org/0000-0002-2564-9071"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Black, Marianne S","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5030741978","display_name":"Valentina Mazzoli","orcid":"https://orcid.org/0000-0002-6700-8424"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mazzoli, Valentina","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5016353811","display_name":"Kathryn J. Stevens","orcid":"https://orcid.org/0000-0003-4365-0241"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Stevens, Kathryn J","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5029950314","display_name":"Robert D. Boutin","orcid":"https://orcid.org/0000-0001-7887-9658"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Boutin, Robert","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103852640","display_name":"Christopher R\u00e9","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"R\u00e9, Christopher","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5044405214","display_name":"Garry E. Gold","orcid":"https://orcid.org/0000-0002-3207-822X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gold, Garry E","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5017843895","display_name":"Brian A. Hargreaves","orcid":"https://orcid.org/0000-0003-0982-3508"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hargreaves, Brian A","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5064829377","display_name":"Akshay Chaudhari","orcid":"https://orcid.org/0000-0002-3667-6796"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chaudhari, Akshay S","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":5,"citation_normalized_percentile":{"value":0.999506,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":83,"max":85},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9947,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9947,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10522","display_name":"Medical Imaging Techniques and Applications","score":0.9936,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12386","display_name":"Advanced X-ray and CT Imaging","score":0.993,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.610916}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6731067},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.610916},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.54883146},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.51646876},{"id":"https://openalex.org/C55020928","wikidata":"https://www.wikidata.org/wiki/Q3813865","display_name":"Image quality","level":3,"score":0.48606232},{"id":"https://openalex.org/C143409427","wikidata":"https://www.wikidata.org/wiki/Q161238","display_name":"Magnetic resonance imaging","level":2,"score":0.44135603},{"id":"https://openalex.org/C31601959","wikidata":"https://www.wikidata.org/wiki/Q931309","display_name":"Medical imaging","level":2,"score":0.4317515},{"id":"https://openalex.org/C101468663","wikidata":"https://www.wikidata.org/wiki/Q1620158","display_name":"Modular design","level":2,"score":0.43082705},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.37812805},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.35946605},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.35537392},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.2515741},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.2078796},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.06823","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2203.06823","pdf_url":"http://arxiv.org/pdf/2203.06823","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2203.06823","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.06823","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.41,"display_name":"Partnerships for the goals","id":"https://metadata.un.org/sdg/17"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W972276598","https://openalex.org/W4379141755","https://openalex.org/W4367060753","https://openalex.org/W4321353415","https://openalex.org/W3088304681","https://openalex.org/W2745001401","https://openalex.org/W2378211422","https://openalex.org/W2130974462","https://openalex.org/W2086519370","https://openalex.org/W2028665553"],"abstract_inverted_index":{"Magnetic":[0],"resonance":[1],"imaging":[2],"(MRI)":[3],"is":[4],"a":[5,100,157,209,222],"cornerstone":[6],"of":[7,25,102,113,123,126,131,143,176,212],"modern":[8],"medical":[9],"imaging.":[10],"However,":[11],"long":[12],"image":[13,68,166,170,216,219],"acquisition":[14],"times,":[15],"the":[16,23,91,136,174],"need":[17],"for":[18,49,57,150,159,172,214],"qualitative":[19],"expert":[20],"analysis,":[21],"and":[22,41,52,82,116,146,168,185,205,218,229],"lack":[24],"(and":[26],"difficulty":[27],"extracting)":[28],"quantitative":[29,103],"indicators":[30],"that":[31,77,108],"are":[32,63,72,231],"sensitive":[33],"to":[34,193],"tissue":[35],"health":[36],"have":[37,54],"curtailed":[38],"widespread":[39],"clinical":[40,80],"research":[42,213],"studies.":[43],"While":[44],"recent":[45],"machine":[46],"learning":[47],"methods":[48],"MRI":[50,94,105,114,134,182],"reconstruction":[51,115,217],"analysis":[53,117,220],"shown":[55],"promise":[56],"reducing":[58],"this":[59,87,191,198],"burden,":[60],"these":[61],"techniques":[62],"primarily":[64],"validated":[65],"with":[66,74,95,165],"imperfect":[67],"quality":[69,175],"metrics,":[70],"which":[71],"discordant":[73],"clinically-relevant":[75,111],"measures":[76],"ultimately":[78],"hamper":[79],"deployment":[81],"clinician":[83],"trust.":[84],"To":[85],"mitigate":[86],"challenge,":[88],"we":[89,189],"present":[90],"Stanford":[92],"Knee":[93],"Multi-Task":[96],"Evaluation":[97],"(SKM-TEA)":[98],"dataset,":[99],"collection":[101],"knee":[104],"(qMRI)":[106],"scans":[107],"enables":[109],"end-to-end,":[110],"evaluation":[112],"tools.":[118],"This":[119],"1.6TB":[120],"dataset":[121,204],"consists":[122],"raw-data":[124],"measurements":[125],"~25,000":[127],"slices":[128],"(155":[129],"patients)":[130],"anonymized":[132],"patient":[133],"scans,":[135],"corresponding":[137],"scanner-generated":[138],"DICOM":[139],"images,":[140],"manual":[141],"segmentations":[142],"four":[144],"tissues,":[145],"bounding":[147],"box":[148],"annotations":[149],"sixteen":[151],"clinically":[152,223],"relevant":[153],"pathologies.":[154],"We":[155,200],"provide":[156],"framework":[158,192],"using":[160],"qMRI":[161,177],"parameter":[162],"maps,":[163],"along":[164],"reconstructions":[167],"dense":[169],"labels,":[171],"measuring":[173],"biomarker":[178],"estimates":[179],"extracted":[180],"from":[181],"reconstruction,":[183],"segmentation,":[184],"detection":[186],"techniques.":[187],"Finally,":[188],"use":[190],"benchmark":[194],"state-of-the-art":[195],"baselines":[196],"on":[197],"dataset.":[199],"hope":[201],"our":[202],"SKM-TEA":[203],"code":[206],"can":[207],"enable":[208],"broad":[210],"spectrum":[211],"modular":[215],"in":[221],"informed":[224],"manner.":[225],"Dataset":[226],"access,":[227],"code,":[228],"benchmarks":[230],"available":[232],"at":[233],"https://github.com/StanfordMIMI/skm-tea.":[234]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4226070742","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":2}],"updated_date":"2025-01-04T15:14:41.453824","created_date":"2022-05-05"}