{"id":"https://openalex.org/W4226494646","doi":"https://doi.org/10.48550/arxiv.2203.06759","title":"Adaptive Gap Entangled Polynomial Coding for Multi-Party Computation at the Edge","display_name":"Adaptive Gap Entangled Polynomial Coding for Multi-Party Computation at the Edge","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4226494646","doi":"https://doi.org/10.48550/arxiv.2203.06759"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.06759","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2203.06759","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5049496213","display_name":"Elahe Vedadi","orcid":"https://orcid.org/0000-0003-1233-6102"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Vedadi, Elahe","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5035130373","display_name":"Yasaman Keshtkarjahromi","orcid":"https://orcid.org/0000-0002-3420-2554"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Keshtkarjahromi, Yasaman","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5059833598","display_name":"H\u00fclya Sefero\u011flu","orcid":"https://orcid.org/0000-0001-5497-6090"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Seferoglu, Hulya","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11321","display_name":"Error Correcting Code Techniques","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11321","display_name":"Error Correcting Code Techniques","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11612","display_name":"Stochastic Gradient Optimization Techniques","score":0.9973,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12808","display_name":"Ferroelectric and Negative Capacitance Devices","score":0.9913,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.8330485},{"id":"https://openalex.org/C179518139","wikidata":"https://www.wikidata.org/wiki/Q5140297","display_name":"Coding (social sciences)","level":2,"score":0.6729212},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.61614376},{"id":"https://openalex.org/C162307627","wikidata":"https://www.wikidata.org/wiki/Q204833","display_name":"Enhanced Data Rates for GSM Evolution","level":2,"score":0.55991167},{"id":"https://openalex.org/C90119067","wikidata":"https://www.wikidata.org/wiki/Q43260","display_name":"Polynomial","level":2,"score":0.48020065},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.41268894},{"id":"https://openalex.org/C18396474","wikidata":"https://www.wikidata.org/wiki/Q2465888","display_name":"Secure multi-party computation","level":3,"score":0.41117853},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.36676204},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.33163512},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.26473448},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.17030954},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.06759","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2203.06759","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.06759","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4231775656","https://openalex.org/W2607129240","https://openalex.org/W2550686250","https://openalex.org/W2383646825","https://openalex.org/W2371018915","https://openalex.org/W2354191502","https://openalex.org/W2083288298","https://openalex.org/W2069340834","https://openalex.org/W2046435967","https://openalex.org/W1972225038"],"abstract_inverted_index":{"Multi-party":[0],"computation":[1,26,57,113],"(MPC)":[2],"is":[3,17,51],"promising":[4],"for":[5,47,83],"designing":[6,48],"privacy-preserving":[7],"machine":[8],"learning":[9],"algorithms":[10,50,98],"at":[11],"edge":[12],"networks.":[13],"An":[14],"emerging":[15],"approach":[16,46],"coded-MPC":[18],"(CMPC),":[19],"which":[20],"advocates":[21],"the":[22,29,36,74,102],"use":[23],"of":[24,31,35,39,76,101,105],"coded":[25,56],"to":[27,52],"improve":[28],"performance":[30],"MPC":[32,88],"in":[33,42,79,99],"terms":[34,100],"required":[37,103],"number":[38,104],"workers":[40,106],"involved":[41],"computations.":[43],"The":[44],"current":[45],"CMPC":[49,97],"merely":[53],"combine":[54],"efficient":[55],"constructions":[58],"with":[59,89],"MPC.":[60,84],"Instead,":[61],"we":[62],"propose":[63],"a":[64],"new":[65],"construction;":[66],"Adaptive":[67],"Gap":[68],"Entangled":[69],"polynomial":[70],"(AGE)":[71],"codes,":[72],"where":[73],"degrees":[75],"polynomials":[77],"used":[78],"computations":[80],"are":[81],"optimized":[82],"We":[85],"show":[86],"that":[87],"AGE":[90],"codes":[91],"(AGE-CMPC)":[92],"performs":[93],"better":[94],"than":[95],"existing":[96],"as":[107,109],"well":[108],"storage,":[110],"communication":[111],"and":[112],"load.":[114]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4226494646","counts_by_year":[],"updated_date":"2025-01-19T02:09:05.432461","created_date":"2022-05-05"}