{"id":"https://openalex.org/W4226134183","doi":"https://doi.org/10.48550/arxiv.2203.04292","title":"Towards performant and reliable undersampled MR reconstruction via diffusion model sampling","display_name":"Towards performant and reliable undersampled MR reconstruction via diffusion model sampling","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4226134183","doi":"https://doi.org/10.48550/arxiv.2203.04292"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.04292","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2203.04292","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5108047388","display_name":"Cheng Peng","orcid":"https://orcid.org/0000-0003-4573-9098"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Peng, Cheng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5058087102","display_name":"Pengfei Guo","orcid":"https://orcid.org/0000-0002-2502-8451"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Guo, Pengfei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5013340445","display_name":"S. Kevin Zhou","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhou, S. Kevin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5004716468","display_name":"Vishal M. Patel","orcid":"https://orcid.org/0000-0002-5239-692X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Patel, Vishal","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5102762707","display_name":"Rama Chellappa","orcid":"https://orcid.org/0000-0002-7638-1650"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chellappa, Rama","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.692698,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":59,"max":69},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10378","display_name":"Advanced MRI Techniques and Applications","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T10378","display_name":"Advanced MRI Techniques and Applications","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10522","display_name":"Medical Imaging Techniques and Applications","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11304","display_name":"Advanced Neuroimaging Techniques and Applications","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.75900674}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76919097},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.75900674},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5793444},{"id":"https://openalex.org/C141379421","wikidata":"https://www.wikidata.org/wiki/Q6094427","display_name":"Iterative reconstruction","level":2,"score":0.52698964},{"id":"https://openalex.org/C19499675","wikidata":"https://www.wikidata.org/wiki/Q232207","display_name":"Monte Carlo method","level":2,"score":0.5244308},{"id":"https://openalex.org/C117896860","wikidata":"https://www.wikidata.org/wiki/Q11376","display_name":"Acceleration","level":2,"score":0.5124862},{"id":"https://openalex.org/C43214815","wikidata":"https://www.wikidata.org/wiki/Q7310987","display_name":"Reliability (semiconductor)","level":3,"score":0.4775199},{"id":"https://openalex.org/C140779682","wikidata":"https://www.wikidata.org/wiki/Q210868","display_name":"Sampling (signal processing)","level":3,"score":0.4465494},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.4194034},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.38264754},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.37292528},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.32485068},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.11324319},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0},{"id":"https://openalex.org/C74650414","wikidata":"https://www.wikidata.org/wiki/Q11397","display_name":"Classical mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.04292","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2203.04292","pdf_url":"http://arxiv.org/pdf/2203.04292","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2203.04292","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.04292","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","score":0.76,"id":"https://metadata.un.org/sdg/11"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W602859758","https://openalex.org/W2776207444","https://openalex.org/W2726447019","https://openalex.org/W2565094479","https://openalex.org/W2390829436","https://openalex.org/W2379101322","https://openalex.org/W2006439817","https://openalex.org/W1992553864","https://openalex.org/W1989791859","https://openalex.org/W1971289376"],"abstract_inverted_index":{"Magnetic":[0],"Resonance":[1],"(MR)":[2],"image":[3],"reconstruction":[4,91,143,159],"from":[5,126,168],"under-sampled":[6],"acquisition":[7,170],"promises":[8],"faster":[9],"scanning":[10],"time.":[11],"To":[12],"this":[13],"end,":[14],"current":[15],"State-of-The-Art":[16],"(SoTA)":[17],"approaches":[18,33],"leverage":[19],"deep":[20],"neural":[21],"networks":[22],"and":[23,59,103,108,123,174],"supervised":[24],"training":[25,113],"to":[26,64,76,138,154],"learn":[27],"a":[28,49,61,86,104,127],"recovery":[29],"model.":[30],"While":[31],"these":[32],"achieve":[34],"impressive":[35],"performances,":[36],"the":[37,78,81,95,100,156],"learned":[38],"model":[39],"can":[40,71],"be":[41,72,178],"fragile":[42],"on":[43,99,114],"unseen":[44],"degradation,":[45],"e.g.":[46],"when":[47],"given":[48],"different":[50,141],"acceleration":[51,116],"factor.":[52],"These":[53],"methods":[54],"are":[55],"also":[56],"generally":[57],"deterministic":[58],"provide":[60],"single":[62],"solution":[63],"an":[65,148],"ill-posed":[66],"problem;":[67],"as":[68,133],"such,":[69,134],"it":[70,135],"difficult":[73],"for":[74],"practitioners":[75],"understand":[77],"reliability":[79],"of":[80,129],"reconstruction.":[82],"We":[83],"introduce":[84],"DiffuseRecon,":[85],"novel":[87],"diffusion":[88,106],"model-based":[89],"MR":[90,131],"method.":[92],"DiffuseRecon":[93,118,146,163],"guides":[94],"generation":[96],"process":[97],"based":[98],"observed":[101],"signals":[102,171],"pre-trained":[105],"model,":[107],"does":[109],"not":[110],"require":[111],"additional":[112],"specific":[115],"factors.":[117],"is":[119],"stochastic":[120],"in":[121,172],"nature":[122],"generates":[124],"results":[125],"distribution":[128],"fully-sampled":[130],"images;":[132],"allows":[136],"us":[137],"explicitly":[139],"visualize":[140],"potential":[142],"solutions.":[144],"Lastly,":[145],"proposes":[147],"accelerated,":[149],"coarse-to-fine":[150],"Monte-Carlo":[151],"sampling":[152],"scheme":[153],"approximate":[155],"most":[157],"likely":[158],"candidate.":[160],"The":[161],"proposed":[162],"achieves":[164],"SoTA":[165],"performances":[166],"reconstructing":[167],"raw":[169],"fastMRI":[173],"SKM-TEA.":[175],"Code":[176],"will":[177],"open-sourced":[179],"at":[180],"www.github.com/cpeng93/DiffuseRecon.":[181]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4226134183","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2025-04-24T11:51:52.819181","created_date":"2022-05-05"}