{"id":"https://openalex.org/W4225727741","doi":"https://doi.org/10.48550/arxiv.2203.01187","title":"Visual Feature Encoding for GNNs on Road Networks","display_name":"Visual Feature Encoding for GNNs on Road Networks","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4225727741","doi":"https://doi.org/10.48550/arxiv.2203.01187"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.01187","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2203.01187","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5002503246","display_name":"Oliver Stromann","orcid":"https://orcid.org/0000-0001-9229-4533"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Stromann, Oliver","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5009544793","display_name":"Alireza Razavi","orcid":"https://orcid.org/0000-0002-1974-2878"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Razavi, Alireza","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5042087981","display_name":"Michael Felsberg","orcid":"https://orcid.org/0000-0002-6096-3648"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Felsberg, Michael","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.747412,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":60,"max":70},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9952,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9952,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9918,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13282","display_name":"Automated Road and Building Extraction","score":0.987,"subfield":{"id":"https://openalex.org/subfields/2212","display_name":"Ocean Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.6012351},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.4407055},{"id":"https://openalex.org/keywords/residual-neural-network","display_name":"Residual neural network","score":0.41225216}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.74348897},{"id":"https://openalex.org/C125411270","wikidata":"https://www.wikidata.org/wiki/Q18653","display_name":"Encoding (memory)","level":2,"score":0.6832571},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.66148007},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.6012351},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5490709},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.47931305},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.4407055},{"id":"https://openalex.org/C123657996","wikidata":"https://www.wikidata.org/wiki/Q12271","display_name":"Architecture","level":2,"score":0.4373386},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.42755404},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.42008328},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4131259},{"id":"https://openalex.org/C2944601119","wikidata":"https://www.wikidata.org/wiki/Q43744058","display_name":"Residual neural network","level":3,"score":0.41225216},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3458048},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.12664926},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.07201585},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.0},{"id":"https://openalex.org/C201995342","wikidata":"https://www.wikidata.org/wiki/Q682496","display_name":"Systems engineering","level":1,"score":0.0},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.01187","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2203.01187","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.01187","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.8,"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4323057981","https://openalex.org/W4285161415","https://openalex.org/W4283822356","https://openalex.org/W3048601286","https://openalex.org/W2965925734","https://openalex.org/W2599472179","https://openalex.org/W2147282173","https://openalex.org/W2129146436","https://openalex.org/W2032507829","https://openalex.org/W1950940422"],"abstract_inverted_index":{"In":[0],"this":[1],"work,":[2],"we":[3,42],"present":[4],"a":[5,44,71,126,140,143],"novel":[6],"approach":[7,73],"to":[8,90,111,125],"learning":[9,145],"an":[10,28,50],"encoding":[11,57],"of":[12,58,120,139],"visual":[13,96,106,113,122],"features":[14],"into":[15],"graph":[16,37],"neural":[17,38],"networks":[18,35],"with":[19,36],"the":[20,79,105,118,121,137],"application":[21],"on":[22,49,78,142],"road":[23,45,54,148],"network":[24,55],"data.":[25],"We":[26],"propose":[27],"architecture":[29,66],"that":[30,104,117],"combines":[31],"state-of-the-art":[32],"vision":[33],"backbone":[34],"networks.":[39],"More":[40],"specifically,":[41],"perform":[43],"type":[46,149],"classification":[47,82],"task":[48,146],"Open":[51],"Street":[52],"Map":[53],"through":[56],"satellite":[59],"imagery":[60],"using":[61],"various":[62],"ResNet":[63,93],"architectures.":[64],"Our":[65],"further":[67,135],"enables":[68],"fine-tuning":[69,119],"and":[70,87],"transfer-learning":[72],"is":[74],"evaluated":[75],"by":[76],"pretraining":[77],"NWPU-RESISC45":[80,133],"image":[81],"dataset":[83,130],"for":[84],"remote":[85,128],"sensing":[86,129],"comparing":[88],"them":[89],"purely":[91],"ImageNet-pretrained":[92],"models":[94],"as":[95,132],"feature":[97,107,123],"encoders.":[98],"The":[99],"results":[100],"show":[101],"not":[102],"only":[103],"encoders":[108],"are":[109],"superior":[110],"low-level":[112],"features,":[114],"but":[115],"also":[116],"encoder":[124],"general":[127],"such":[131],"can":[134],"improve":[136],"performance":[138],"GNN":[141],"machine":[144],"like":[147],"classification.":[150]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4225727741","counts_by_year":[{"year":2022,"cited_by_count":1}],"updated_date":"2025-01-06T18:38:19.439855","created_date":"2022-05-05"}