{"id":"https://openalex.org/W4226104947","doi":"https://doi.org/10.48550/arxiv.2203.00846","title":"PUMA: Performance Unchanged Model Augmentation for Training Data Removal","display_name":"PUMA: Performance Unchanged Model Augmentation for Training Data Removal","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4226104947","doi":"https://doi.org/10.48550/arxiv.2203.00846"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.00846","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2203.00846","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5004959715","display_name":"Ga Wu","orcid":"https://orcid.org/0000-0002-0370-0622"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wu, Ga","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5006969644","display_name":"Masoud Hashemi","orcid":"https://orcid.org/0000-0002-6126-4208"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hashemi, Masoud","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5059606409","display_name":"Christopher Srinivasa","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Srinivasa, Christopher","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.820962,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":78,"max":81},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9876,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9876,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9727,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9706,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/puma","display_name":"Puma","score":0.6686449},{"id":"https://openalex.org/keywords/retraining","display_name":"Retraining","score":0.43711755},{"id":"https://openalex.org/keywords/degradation","display_name":"Degradation","score":0.41791257}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.736646},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.7151443},{"id":"https://openalex.org/C2777417711","wikidata":"https://www.wikidata.org/wiki/Q270748","display_name":"Puma","level":3,"score":0.6686449},{"id":"https://openalex.org/C2778712577","wikidata":"https://www.wikidata.org/wiki/Q3505966","display_name":"Retraining","level":2,"score":0.43711755},{"id":"https://openalex.org/C28719098","wikidata":"https://www.wikidata.org/wiki/Q44946","display_name":"Point (geometry)","level":2,"score":0.43092036},{"id":"https://openalex.org/C2779679103","wikidata":"https://www.wikidata.org/wiki/Q5251805","display_name":"Degradation (telecommunications)","level":2,"score":0.41791257},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4157768},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.37528113},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.32256037},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.092470676},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C155202549","wikidata":"https://www.wikidata.org/wiki/Q178803","display_name":"International trade","level":1,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.00846","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2203.00846","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.00846","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3029624080","https://openalex.org/W2977641071","https://openalex.org/W2383847661","https://openalex.org/W2383247791","https://openalex.org/W2375475061","https://openalex.org/W2347355260","https://openalex.org/W2255064539","https://openalex.org/W2112968535","https://openalex.org/W2049426872","https://openalex.org/W1967092074"],"abstract_inverted_index":{"Preserving":[0],"the":[1,33,37,41,55,77,98,106,119,128,134,137,150,155,162,171,190],"performance":[2,78,114,183],"of":[3,11,100,122,136,165],"a":[4,23,84,177],"trained":[5],"model":[6,24,34,38,172],"while":[7],"removing":[8,123],"unique":[9,65,163],"characteristics":[10,66,164],"marked":[12,42,124,166],"training":[13,29,102,167],"data":[14,30,43,103,125,130,146,168,191,204],"points":[15,205],"is":[16],"challenging.":[17],"Recent":[18],"research":[19],"usually":[20],"suggests":[21],"retraining":[22,170],"from":[25,47],"scratch":[26],"with":[27,110,143],"remaining":[28,129],"or":[31],"refining":[32],"by":[35,126],"reverting":[36],"optimization":[39],"on":[40,105],"points.":[44],"Unfortunately,":[45],"aside":[46],"their":[48],"computational":[49],"inefficiency,":[50],"those":[51],"approaches":[52],"inevitably":[53],"hurt":[54],"resulting":[56],"model's":[57,107],"generalization":[58,108],"ability":[59,109],"since":[60],"they":[61],"remove":[62,161],"not":[63],"only":[64],"but":[67],"also":[68],"discard":[69],"shared":[70],"(and":[71],"possibly":[72],"contributive)":[73],"information.":[74],"To":[75,132],"address":[76],"degradation":[79],"problem,":[80],"this":[81],"paper":[82],"presents":[83],"novel":[85],"approach":[86],"called":[87],"Performance":[88],"Unchanged":[89],"Model":[90],"Augmentation~(PUMA).":[91],"The":[92],"proposed":[93],"PUMA":[94,138,156,188],"framework":[95],"explicitly":[96],"models":[97],"influence":[99],"each":[101],"point":[104],"respect":[111],"to":[112,201],"various":[113],"criteria.":[115],"It":[116],"then":[117],"complements":[118],"negative":[120],"impact":[121],"reweighting":[127],"optimally.":[131],"demonstrate":[133],"effectiveness":[135],"framework,":[139],"we":[140,153,196],"compared":[141],"it":[142,198],"multiple":[144],"state-of-the-art":[145],"removal":[147],"techniques":[148],"in":[149],"experiments,":[151],"where":[152],"show":[154,197],"can":[157,174],"effectively":[158],"and":[159,180],"efficiently":[160,207],"without":[169],"that":[173],"1)":[175],"fool":[176],"membership":[178],"attack,":[179],"2)":[181],"resist":[182],"degradation.":[184],"In":[185],"addition,":[186],"as":[187],"estimates":[189],"importance":[192],"during":[193],"its":[194],"operation,":[195],"could":[199],"serve":[200],"debug":[202],"mislabelled":[203],"more":[206],"than":[208],"existing":[209],"approaches.":[210]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4226104947","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":3}],"updated_date":"2025-04-25T11:16:30.378497","created_date":"2022-05-05"}