{"id":"https://openalex.org/W4221149648","doi":"https://doi.org/10.48550/arxiv.2203.00503","title":"Gait Events Prediction using Hybrid CNN-RNN-based Deep Learning models through a Single Waist-worn Wearable Sensor","display_name":"Gait Events Prediction using Hybrid CNN-RNN-based Deep Learning models through a Single Waist-worn Wearable Sensor","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4221149648","doi":"https://doi.org/10.48550/arxiv.2203.00503"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.00503","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2203.00503","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5047327039","display_name":"Muhammad Zeeshan Arshad","orcid":"https://orcid.org/0000-0003-4397-270X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Arshad, Muhammad Zeeshan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5090907568","display_name":"Ankhzaya Jamsrandorj","orcid":"https://orcid.org/0000-0001-9236-057X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jamsrandorj, Ankhzaya","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100753950","display_name":"Jinwook Kim","orcid":"https://orcid.org/0000-0002-2072-3922"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kim, Jinwook","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5103024951","display_name":"Kyung-Ryoul Mun","orcid":"https://orcid.org/0000-0001-5951-1014"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mun, Kyung-Ryoul","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12740","display_name":"Gait Recognition and Analysis","score":0.9771,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12740","display_name":"Gait Recognition and Analysis","score":0.9771,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C79061980","wikidata":"https://www.wikidata.org/wiki/Q941680","display_name":"Inertial measurement unit","level":2,"score":0.76921904},{"id":"https://openalex.org/C150594956","wikidata":"https://www.wikidata.org/wiki/Q1334829","display_name":"Wearable computer","level":2,"score":0.70801973},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7006358},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.64864004},{"id":"https://openalex.org/C151800584","wikidata":"https://www.wikidata.org/wiki/Q2370000","display_name":"Gait","level":2,"score":0.6410661},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6284711},{"id":"https://openalex.org/C2779662365","wikidata":"https://www.wikidata.org/wiki/Q5416694","display_name":"Event (particle physics)","level":2,"score":0.52656317},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.36150277},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.3494417},{"id":"https://openalex.org/C79403827","wikidata":"https://www.wikidata.org/wiki/Q3988","display_name":"Real-time computing","level":1,"score":0.3420468},{"id":"https://openalex.org/C99508421","wikidata":"https://www.wikidata.org/wiki/Q2678675","display_name":"Physical medicine and rehabilitation","level":1,"score":0.23897919},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.12639382},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.106075436},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.00503","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2203.00503","pdf_url":"http://arxiv.org/pdf/2203.00503","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2203.00503","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.00503","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W9839718","https://openalex.org/W4287122200","https://openalex.org/W3202472720","https://openalex.org/W3166845860","https://openalex.org/W3110613631","https://openalex.org/W3082879976","https://openalex.org/W2742744817","https://openalex.org/W2225378543","https://openalex.org/W2091018038","https://openalex.org/W2040913503"],"abstract_inverted_index":{"Elderly":[0],"gait":[1,55,154,207,224],"is":[2,203],"a":[3,27,34,48,62,160,211],"source":[4],"of":[5,40,50,54,127,141,165,172,186,194,223],"rich":[6],"information":[7,41],"about":[8],"their":[9],"physical":[10],"and":[11,37,68,105,113,129,144,174,178,200,226],"mental":[12],"health":[13,240],"condition.":[14],"As":[15],"an":[16,38,170],"alternative":[17],"to":[18,46,97,219],"the":[19,23,31,52,59,66,92,111,134,138,150,157,183,192,221],"multiple":[20],"sensors":[21,82],"on":[22,30,65],"lower":[24],"body":[25],"parts,":[26],"single":[28,63,212],"sensor":[29,64,94],"pelvis":[32],"has":[33],"positional":[35],"advantage":[36],"abundance":[39],"acquirable.":[42],"This":[43],"study":[44,216],"aimed":[45],"explore":[47],"way":[49],"improving":[51],"accuracy":[53,126],"event":[56,155,208],"detection":[57,209,225],"in":[58,163,230],"elderly":[60,76],"using":[61,210],"waist":[67,93,213],"deep":[69],"learning":[70],"models.":[71],"Data":[72],"was":[73,88,95,118,131],"gathered":[74],"from":[75,91,120,149],"subjects":[77],"equipped":[78],"with":[79,108,198],"three":[80],"IMU":[81,122],"while":[83],"they":[84],"walked.":[85],"The":[86,116,188,215],"input":[87],"taken":[89],"only":[90],"used":[96,237],"train":[98],"16":[99],"deep-learning":[100],"models":[101,197],"including":[102],"CNN,":[103],"RNN,":[104],"CNN-RNN":[106,195],"hybrid":[107,196],"or":[109,243],"without":[110],"Bidirectional":[112,201],"Attention":[114,199],"mechanism.":[115],"groundtruth":[117],"extracted":[119],"foot":[121],"sensors.":[123],"Fairly":[124],"high":[125],"99.73%":[128],"93.89%":[130],"achieved":[132],"by":[133],"CNN-BiGRU-Att":[135],"model":[136,158],"at":[137,182],"tolerance":[139,184],"window":[140,185],"$\\pm$6TS":[142],"($\\pm$6ms)":[143],"$\\pm$1TS":[145],"($\\pm$1ms)":[146],"respectively.":[147],"Advancing":[148],"previous":[151],"studies":[152],"exploring":[153],"detection,":[156],"showed":[159,190],"great":[161],"improvement":[162],"terms":[164],"its":[166,228],"prediction":[167],"error":[168],"having":[169],"MAE":[171],"6.239ms":[173],"5.24ms":[175],"for":[176,205,238],"HS":[177],"TO":[179],"events":[180],"respectively":[181],"$\\pm$1TS.":[187],"results":[189],"that":[191,234],"use":[193],"mechanisms":[202],"promising":[204],"accurate":[206],"sensor.":[214],"can":[217,235],"contribute":[218],"reducing":[220],"burden":[222],"increase":[227],"applicability":[229],"future":[231],"wearable":[232],"devices":[233],"be":[236],"remote":[239],"monitoring":[241],"(RHM)":[242],"diagnosis":[244],"based":[245],"thereon.":[246]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4221149648","counts_by_year":[],"updated_date":"2024-12-12T08:58:25.098270","created_date":"2022-04-03"}