{"id":"https://openalex.org/W2963960302","doi":"https://doi.org/10.4230/lipics.sea.2017.7","title":"Efficient Algorithms for k-Regret Minimizing Sets","display_name":"Efficient Algorithms for k-Regret Minimizing Sets","publication_year":2017,"publication_date":"2017-01-01","ids":{"openalex":"https://openalex.org/W2963960302","doi":"https://doi.org/10.4230/lipics.sea.2017.7","mag":"2963960302"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://drops.dagstuhl.de/opus/volltexte/2017/7632/pdf/LIPIcs-SEA-2017-7.pdf/","pdf_url":null,"source":{"id":"https://openalex.org/S4306420977","display_name":"Symposium on Experimental and Efficient Algorithms","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":[],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5058649592","display_name":"Pankaj K. Agarwal","orcid":"https://orcid.org/0000-0002-9439-181X"},"institutions":[{"id":"https://openalex.org/I170897317","display_name":"Duke University","ror":"https://ror.org/00py81415","country_code":"US","type":"education","lineage":["https://openalex.org/I170897317"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Pankaj K. Agarwal","raw_affiliation_strings":["Duke University, Durham, United States"],"affiliations":[{"raw_affiliation_string":"Duke University, Durham, United States","institution_ids":["https://openalex.org/I170897317"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074936673","display_name":"Nirman Kumar","orcid":"https://orcid.org/0000-0001-6601-2790"},"institutions":[{"id":"https://openalex.org/I94658018","display_name":"University of Memphis","ror":"https://ror.org/01cq23130","country_code":"US","type":"education","lineage":["https://openalex.org/I94658018"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Nirman Kumar","raw_affiliation_strings":["University of Memphis, Memphis, United States"],"affiliations":[{"raw_affiliation_string":"University of Memphis, Memphis, United States","institution_ids":["https://openalex.org/I94658018"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5015883931","display_name":"Stavros Sintos","orcid":"https://orcid.org/0000-0002-2114-8886"},"institutions":[{"id":"https://openalex.org/I170897317","display_name":"Duke University","ror":"https://ror.org/00py81415","country_code":"US","type":"education","lineage":["https://openalex.org/I170897317"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Stavros Sintos","raw_affiliation_strings":["Duke University, Durham, United States"],"affiliations":[{"raw_affiliation_string":"Duke University, Durham, United States","institution_ids":["https://openalex.org/I170897317"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5072397842","display_name":"Subhash Suri","orcid":"https://orcid.org/0000-0002-5668-7521"},"institutions":[{"id":"https://openalex.org/I154570441","display_name":"University of California, Santa Barbara","ror":"https://ror.org/02t274463","country_code":"US","type":"education","lineage":["https://openalex.org/I154570441"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Subhash Suri","raw_affiliation_strings":["University of California, Santa Barbara, Santa Barbara, United States"],"affiliations":[{"raw_affiliation_string":"University of California, Santa Barbara, Santa Barbara, United States","institution_ids":["https://openalex.org/I154570441"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.228,"has_fulltext":false,"cited_by_count":8,"citation_normalized_percentile":{"value":0.587691,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":null,"issue":null,"first_page":"23","last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":0.983,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":0.983,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.9828,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T12288","display_name":"Optimization and Search Problems","score":0.9738,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/very-large-database","display_name":"Very large database","score":0.62831676}],"concepts":[{"id":"https://openalex.org/C50817715","wikidata":"https://www.wikidata.org/wiki/Q79895177","display_name":"Regret","level":2,"score":0.8974886},{"id":"https://openalex.org/C23549232","wikidata":"https://www.wikidata.org/wiki/Q3556311","display_name":"Very large database","level":2,"score":0.62831676},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.6227356},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.55982006},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.51040834},{"id":"https://openalex.org/C148764684","wikidata":"https://www.wikidata.org/wiki/Q621751","display_name":"Approximation algorithm","level":2,"score":0.4711864},{"id":"https://openalex.org/C51823790","wikidata":"https://www.wikidata.org/wiki/Q504353","display_name":"Greedy algorithm","level":2,"score":0.4660626},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.42885768},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.38080618},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.32101417},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.22833273},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.19089058},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.1496078},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://drops.dagstuhl.de/opus/volltexte/2017/7632/pdf/LIPIcs-SEA-2017-7.pdf/","pdf_url":null,"source":{"id":"https://openalex.org/S4306420977","display_name":"Symposium on Experimental and Efficient Algorithms","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W79208629","https://openalex.org/W3125176478","https://openalex.org/W3108606623","https://openalex.org/W2972489082","https://openalex.org/W2951648484","https://openalex.org/W2948578919","https://openalex.org/W2901076901","https://openalex.org/W2791243274","https://openalex.org/W2782288225","https://openalex.org/W2776903287","https://openalex.org/W2612011639","https://openalex.org/W2605212527","https://openalex.org/W2290570034","https://openalex.org/W2170188482","https://openalex.org/W2104211550","https://openalex.org/W2083723353","https://openalex.org/W1998952728","https://openalex.org/W1991337804","https://openalex.org/W1697684871","https://openalex.org/W1531019192"],"abstract_inverted_index":{"A":[0],"regret":[1,48,105],"minimizing":[2,41],"set":[3,42,102],"Q":[4,22,58,103],"is":[5,68,76,92,107,121],"a":[6,11,39,85,99],"small":[7,108],"size":[8],"representation":[9],"of":[10,53,62,73,80,164,203],"much":[12,29,196],"larger":[13,197],"database":[14],"P":[15,67],"so":[16],"that":[17,46,118,187],"user":[18,114],"queries":[19],"executed":[20],"on":[21,33,151,156],"return":[23],"answers":[24],"whose":[25,104],"scores":[26],"are":[27,141,190],"not":[28],"worse":[30],"than":[31,199],"those":[32],"the":[34,44,47,51,54,60,63,71,77,81,178,200],"full":[35],"dataset.":[36],"In":[37],"particular,":[38],"k-regret":[40,119],"has":[43],"property":[45],"ratio":[49,106],"between":[50],"score":[52,61,72],"top-1":[55],"item":[56,65,75],"in":[57,66,181],"and":[59,153,170,173,193],"top-k":[64],"minimized,":[69],"where":[70],"an":[74,128],"inner":[78],"product":[79],"item's":[82],"attributes":[83],"with":[84,109,146],"user's":[86],"weight":[87,115],"(preference)":[88],"vector.":[89],"The":[90,184],"problem":[91,130],"challenging":[93],"because":[94],"we":[95],"want":[96],"to":[97,111,195],"find":[98],"single":[100],"representative":[101],"respect":[110],"all":[112,124],"possible":[113],"vectors.\n\nWe":[116],"show":[117,186],"minimization":[120],"NP-Complete":[122],"for":[123,207],"dimensions":[125],"d>=3,":[126],"settling":[127],"open":[129],"from":[131],"Chester":[132,204],"et":[133,205],"al.":[134,206],"[VLDB":[135,182],"2014].":[136],"Our":[137],"main":[138],"algorithmic":[139],"contributions":[140],"two":[142],"approximation":[143],"algorithms,":[144,166],"both":[145,168],"provable":[147],"guarantees,":[148],"one":[149],"based":[150,155],"coresets":[152],"another":[154],"hitting":[157],"sets.":[158],"We":[159],"perform":[160],"extensive":[161],"experimental":[162],"evaluation":[163],"our":[165,188],"using":[167],"real-world":[169],"synthetic":[171],"data,":[172],"compare":[174],"their":[175],"performance":[176],"against":[177],"solution":[179],"proposed":[180],"14].":[183],"results":[185],"algorithms":[189],"significantly":[191],"faster":[192],"scalable":[194],"sets":[198],"greedy":[201],"algorithm":[202],"comparable":[208],"quality":[209],"answers.":[210]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2963960302","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":3}],"updated_date":"2024-12-07T17:28:19.318732","created_date":"2019-07-30"}