{"id":"https://openalex.org/W2751057346","doi":"https://doi.org/10.4230/lipics.sea.2017.15","title":"The Quantile Index - Succinct Self-Index for Top-k Document Retrieval","display_name":"The Quantile Index - Succinct Self-Index for Top-k Document Retrieval","publication_year":2017,"publication_date":"2017-01-01","ids":{"openalex":"https://openalex.org/W2751057346","doi":"https://doi.org/10.4230/lipics.sea.2017.15","mag":"2751057346"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://dblp.uni-trier.de/db/conf/wea/sea2017.html#BaumstarkGHL17a","pdf_url":null,"source":{"id":"https://openalex.org/S4306420977","display_name":"Symposium on Experimental and Efficient Algorithms","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":[],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5045507004","display_name":"Niklas Baumstark","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Niklas Baumstark","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061901128","display_name":"Simon Gog","orcid":"https://orcid.org/0000-0002-5450-8630"},"institutions":[{"id":"https://openalex.org/I102335020","display_name":"Karlsruhe Institute of Technology","ror":"https://ror.org/04t3en479","country_code":"DE","type":"funder","lineage":["https://openalex.org/I102335020","https://openalex.org/I1305996414"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Simon Gog","raw_affiliation_strings":["Karlsruhe Institute of Technology, Karlsruhe, Germany"],"affiliations":[{"raw_affiliation_string":"Karlsruhe Institute of Technology, Karlsruhe, Germany","institution_ids":["https://openalex.org/I102335020"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5088760663","display_name":"Tobias Heuer","orcid":"https://orcid.org/0000-0002-5399-0496"},"institutions":[{"id":"https://openalex.org/I102335020","display_name":"Karlsruhe Institute of Technology","ror":"https://ror.org/04t3en479","country_code":"DE","type":"funder","lineage":["https://openalex.org/I102335020","https://openalex.org/I1305996414"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Tobias Heuer","raw_affiliation_strings":["Karlsruhe Institute of Technology, Karlsruhe, Germany"],"affiliations":[{"raw_affiliation_string":"Karlsruhe Institute of Technology, Karlsruhe, Germany","institution_ids":["https://openalex.org/I102335020"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5005087986","display_name":"Julian Labeit","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Julian Labeit","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":63},"biblio":{"volume":"75","issue":null,"first_page":"14","last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11269","display_name":"Algorithms and Data Compression","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11269","display_name":"Algorithms and Data Compression","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11106","display_name":"Data Management and Algorithms","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9859,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/inverted-index","display_name":"Inverted index","score":0.7049947},{"id":"https://openalex.org/keywords/suffix-array","display_name":"Suffix array","score":0.61710507},{"id":"https://openalex.org/keywords/phrase","display_name":"Phrase","score":0.52042466},{"id":"https://openalex.org/keywords/quantile","display_name":"Quantile","score":0.45611948}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.78160733},{"id":"https://openalex.org/C130590232","wikidata":"https://www.wikidata.org/wiki/Q1671754","display_name":"Inverted index","level":3,"score":0.7049947},{"id":"https://openalex.org/C2779804580","wikidata":"https://www.wikidata.org/wiki/Q102047","display_name":"Suffix","level":2,"score":0.6380082},{"id":"https://openalex.org/C2779259728","wikidata":"https://www.wikidata.org/wiki/Q281472","display_name":"Suffix array","level":3,"score":0.61710507},{"id":"https://openalex.org/C2776224158","wikidata":"https://www.wikidata.org/wiki/Q187931","display_name":"Phrase","level":2,"score":0.52042466},{"id":"https://openalex.org/C2777382242","wikidata":"https://www.wikidata.org/wiki/Q6017816","display_name":"Index (typography)","level":2,"score":0.51777375},{"id":"https://openalex.org/C39927690","wikidata":"https://www.wikidata.org/wiki/Q11197","display_name":"Logarithm","level":2,"score":0.5091445},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.50717187},{"id":"https://openalex.org/C61797465","wikidata":"https://www.wikidata.org/wiki/Q1188986","display_name":"Term (time)","level":2,"score":0.46693152},{"id":"https://openalex.org/C118671147","wikidata":"https://www.wikidata.org/wiki/Q578714","display_name":"Quantile","level":2,"score":0.45611948},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.42263123},{"id":"https://openalex.org/C28719098","wikidata":"https://www.wikidata.org/wiki/Q44946","display_name":"Point (geometry)","level":2,"score":0.41363513},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.34098434},{"id":"https://openalex.org/C75165309","wikidata":"https://www.wikidata.org/wiki/Q2258979","display_name":"Search engine indexing","level":2,"score":0.26274022},{"id":"https://openalex.org/C162319229","wikidata":"https://www.wikidata.org/wiki/Q175263","display_name":"Data structure","level":2,"score":0.22269422},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.17030776},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.16446519},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.15624744},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://dblp.uni-trier.de/db/conf/wea/sea2017.html#BaumstarkGHL17a","pdf_url":null,"source":{"id":"https://openalex.org/S4306420977","display_name":"Symposium on Experimental and Efficient Algorithms","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3124993569","https://openalex.org/W2948082807","https://openalex.org/W2744844890","https://openalex.org/W2564137157","https://openalex.org/W2503983080","https://openalex.org/W2470376184","https://openalex.org/W2247135936","https://openalex.org/W2246028487","https://openalex.org/W2112618157","https://openalex.org/W2111971349","https://openalex.org/W2068119373","https://openalex.org/W2053523303","https://openalex.org/W2046874737","https://openalex.org/W2043150166","https://openalex.org/W2038525506","https://openalex.org/W2006608770","https://openalex.org/W1980344365","https://openalex.org/W1966607771","https://openalex.org/W1595060970","https://openalex.org/W1564085854"],"abstract_inverted_index":{"One":[0],"of":[1,10,32,45,65,74,99,103,130,153,220,256,290],"the":[2,12,66,78,85,91,104,131,134,150,154,161,165,176,212,221,254,257,265],"central":[3],"problems":[4],"in":[5,15,51,133,278],"information":[6],"retrieval":[7],"is":[8,94,123,264,272],"that":[9,20,39,145,186,249,271],"finding":[11],"k":[13],"documents":[14],"a":[16,23,27,56,62,88,97,114,128,194,216,293],"large":[17],"text":[18,105,269],"collection":[19],"best":[21],"match":[22],"query":[24,162,226,288],"given":[25],"by":[26,125,179],"user.":[28],"A":[29],"recent":[30],"result":[31],"Navarro":[33,180],"&":[34,181],"Nekrich":[35],"(SODA":[36],"2012)":[37],"showed":[38],"single":[40],"term":[41,199],"and":[42,192,235,241],"phrase":[43],"queries":[44,144],"length":[46],"m":[47],"can":[48,203],"be":[49,69,147,204],"solved":[50],"optimal":[52],"O(m+k)":[53],"time":[54],"using":[55,149],"linear":[57],"word":[58],"sized":[59],"index.":[60,141],"While":[61],"verbatim":[63],"implementation":[64],"index":[67,86,155,202,251,270],"would":[68],"at":[70],"least":[71],"an":[72,169],"order":[73],"magnitude":[75],"larger":[76],"than":[77],"original":[79,135,258],"collection,":[80],"various":[81],"authors":[82],"incrementally":[83],"improved":[84],"to":[87,101,159,175,274],"point":[89],"where":[90],"space":[92,213,239],"requirement":[93],"currently":[95],"within":[96],"factor":[98],"1.5":[100],"2.0":[102],"size":[106,255],"for":[107,118,188,193,215,281,297],"standard":[108,190,195],"collections.\r\n\r\nIn":[109],"this":[110,276],"paper,":[111],"we":[112,156,171],"propose":[113],"new":[115],"time/space":[116],"trade-off":[117],"different":[119],"top-k":[120,177],"indexes.":[121],"This":[122],"achieved":[124],"sampling":[126],"only":[127,207],"quantile":[129],"postings":[132],"inverted":[136],"file":[137],"or":[138],"suffix":[139,218,267],"array-based":[140,268],"For":[142],"those":[143],"cannot":[146],"answered":[148],"sampled":[151],"version":[152],"show":[157,248],"how":[158],"compute":[160],"results":[163],"on":[164,232,295],"fly":[166],"efficiently.":[167],"As":[168],"example,":[170],"apply":[172],"our":[173,201,230,250,261],"method":[174],"framework":[178],"Nekrich.":[182],"Under":[183],"probabilistic":[184],"assumptions":[185],"hold":[187],"most":[189],"texts,":[191],"scoring":[196],"function":[197],"called":[198],"frequency,":[200],"represented":[205],"with":[206],"sublinearly":[208],"many":[209],"bits":[210],"plus":[211],"needed":[214],"compressed":[217],"array":[219],"text,":[222],"while":[223,284],"maintaining":[224,286],"poly-logarithmic":[225],"times.":[227],"We":[228],"evaluate":[229],"solution":[231],"real-world":[233],"datasets":[234],"compare":[236],"its":[237],"practical":[238],"usage":[240],"performance":[242],"against":[243],"state-of-the-art":[244],"implementations.":[245],"Our":[246],"experiments":[247],"compresses":[252],"below":[253],"text.":[259],"To":[260],"knowledge":[262],"it":[263],"first":[266],"able":[273],"break":[275],"bound":[277],"practice":[279],"even":[280],"non-repetitive":[282],"collections,":[283],"still":[285],"reasonable":[287],"times":[289],"under":[291],"half":[292],"millisecond":[294],"average":[296],"top-10":[298],"queries.":[299]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2751057346","counts_by_year":[],"updated_date":"2025-01-27T16:47:05.787249","created_date":"2017-09-15"}