{"id":"https://openalex.org/W4405004258","doi":"https://doi.org/10.4114/intartif.vol28iss75pp63-80","title":"Breast Cancer Classification Using Gradient Boosting Algorithms Focusing on Reducing the False Negative and SHAP for Explainability","display_name":"Breast Cancer Classification Using Gradient Boosting Algorithms Focusing on Reducing the False Negative and SHAP for Explainability","publication_year":2024,"publication_date":"2024-12-04","ids":{"openalex":"https://openalex.org/W4405004258","doi":"https://doi.org/10.4114/intartif.vol28iss75pp63-80"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.4114/intartif.vol28iss75pp63-80","pdf_url":"https://journal.iberamia.org/index.php/intartif/article/download/1637/238","source":{"id":"https://openalex.org/S4210203986","display_name":"INTELIGENCIA ARTIFICIAL","issn_l":"1137-3601","issn":["1137-3601","1988-3064"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310321681","host_organization_name":"Asociaci\u00f3n Espa\u00f1ola para la Inteligencia Artificial","host_organization_lineage":["https://openalex.org/P4310321681"],"host_organization_lineage_names":["Asociaci\u00f3n Espa\u00f1ola para la Inteligencia Artificial"],"type":"journal"},"license":"cc-by-nc","license_id":"https://openalex.org/licenses/cc-by-nc","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"diamond","oa_url":"https://journal.iberamia.org/index.php/intartif/article/download/1637/238","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5013585621","display_name":"Jo\u00e3o Manoel Herrera Pinheiro","orcid":"https://orcid.org/0009-0001-6192-7374"},"institutions":[{"id":"https://openalex.org/I17974374","display_name":"Universidade de S\u00e3o Paulo","ror":"https://ror.org/036rp1748","country_code":"BR","type":"education","lineage":["https://openalex.org/I17974374"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Jo\u00e3o Manoel Herrera Pinheiro","raw_affiliation_strings":["University of S\u00e3o Paulo, Brazil"],"affiliations":[{"raw_affiliation_string":"University of S\u00e3o Paulo, Brazil","institution_ids":["https://openalex.org/I17974374"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5002220583","display_name":"Marcelo Becker","orcid":"https://orcid.org/0000-0002-7508-5817"},"institutions":[{"id":"https://openalex.org/I17974374","display_name":"Universidade de S\u00e3o Paulo","ror":"https://ror.org/036rp1748","country_code":"BR","type":"education","lineage":["https://openalex.org/I17974374"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Marcelo Becker","raw_affiliation_strings":["University of S\u00e3o Paulo, Brazil"],"affiliations":[{"raw_affiliation_string":"University of S\u00e3o Paulo, Brazil","institution_ids":["https://openalex.org/I17974374"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":0,"currency":"USD","value_usd":0,"provenance":"doaj"},"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":"28","issue":"75","first_page":"63","last_page":"80"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9946,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9946,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11396","display_name":"Artificial Intelligence in Healthcare","score":0.9864,"subfield":{"id":"https://openalex.org/subfields/3605","display_name":"Health Information Management"},"field":{"id":"https://openalex.org/fields/36","display_name":"Health Professions"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/boosting","display_name":"Boosting","score":0.8383063},{"id":"https://openalex.org/keywords/interpretability","display_name":"Interpretability","score":0.7218855},{"id":"https://openalex.org/keywords/adaboost","display_name":"AdaBoost","score":0.66421366},{"id":"https://openalex.org/keywords/confusion-matrix","display_name":"Confusion matrix","score":0.5574515},{"id":"https://openalex.org/keywords/gradient-boosting","display_name":"Gradient boosting","score":0.5089426},{"id":"https://openalex.org/keywords/statistical-classification","display_name":"Statistical classification","score":0.44283321},{"id":"https://openalex.org/keywords/hyperparameter","display_name":"Hyperparameter","score":0.42761356}],"concepts":[{"id":"https://openalex.org/C46686674","wikidata":"https://www.wikidata.org/wiki/Q466303","display_name":"Boosting (machine learning)","level":2,"score":0.8383063},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.77817917},{"id":"https://openalex.org/C2781067378","wikidata":"https://www.wikidata.org/wiki/Q17027399","display_name":"Interpretability","level":2,"score":0.7218855},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.69564056},{"id":"https://openalex.org/C141404830","wikidata":"https://www.wikidata.org/wiki/Q2823869","display_name":"AdaBoost","level":3,"score":0.66421366},{"id":"https://openalex.org/C530470458","wikidata":"https://www.wikidata.org/wiki/Q128581","display_name":"Breast cancer","level":3,"score":0.5805522},{"id":"https://openalex.org/C138602881","wikidata":"https://www.wikidata.org/wiki/Q2709591","display_name":"Confusion matrix","level":2,"score":0.5574515},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5376543},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.5332465},{"id":"https://openalex.org/C70153297","wikidata":"https://www.wikidata.org/wiki/Q5591907","display_name":"Gradient boosting","level":3,"score":0.5089426},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4877563},{"id":"https://openalex.org/C81669768","wikidata":"https://www.wikidata.org/wiki/Q2359161","display_name":"Precision and recall","level":2,"score":0.45212463},{"id":"https://openalex.org/C110083411","wikidata":"https://www.wikidata.org/wiki/Q1744628","display_name":"Statistical classification","level":2,"score":0.44283321},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.4280333},{"id":"https://openalex.org/C8642999","wikidata":"https://www.wikidata.org/wiki/Q4171168","display_name":"Hyperparameter","level":2,"score":0.42761356},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.32626224},{"id":"https://openalex.org/C121608353","wikidata":"https://www.wikidata.org/wiki/Q12078","display_name":"Cancer","level":2,"score":0.25056374},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.21449888},{"id":"https://openalex.org/C126322002","wikidata":"https://www.wikidata.org/wiki/Q11180","display_name":"Internal medicine","level":1,"score":0.06922987},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.4114/intartif.vol28iss75pp63-80","pdf_url":"https://journal.iberamia.org/index.php/intartif/article/download/1637/238","source":{"id":"https://openalex.org/S4210203986","display_name":"INTELIGENCIA ARTIFICIAL","issn_l":"1137-3601","issn":["1137-3601","1988-3064"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310321681","host_organization_name":"Asociaci\u00f3n Espa\u00f1ola para la Inteligencia Artificial","host_organization_lineage":["https://openalex.org/P4310321681"],"host_organization_lineage_names":["Asociaci\u00f3n Espa\u00f1ola para la Inteligencia Artificial"],"type":"journal"},"license":"cc-by-nc","license_id":"https://openalex.org/licenses/cc-by-nc","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.09548","pdf_url":"http://arxiv.org/pdf/2403.09548","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.4114/intartif.vol28iss75pp63-80","pdf_url":"https://journal.iberamia.org/index.php/intartif/article/download/1637/238","source":{"id":"https://openalex.org/S4210203986","display_name":"INTELIGENCIA ARTIFICIAL","issn_l":"1137-3601","issn":["1137-3601","1988-3064"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310321681","host_organization_name":"Asociaci\u00f3n Espa\u00f1ola para la Inteligencia Artificial","host_organization_lineage":["https://openalex.org/P4310321681"],"host_organization_lineage_names":["Asociaci\u00f3n Espa\u00f1ola para la Inteligencia Artificial"],"type":"journal"},"license":"cc-by-nc","license_id":"https://openalex.org/licenses/cc-by-nc","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.8,"id":"https://metadata.un.org/sdg/3","display_name":"Good health and well-being"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4387191505","https://openalex.org/W4385447970","https://openalex.org/W4298012357","https://openalex.org/W2964397447","https://openalex.org/W2744600799","https://openalex.org/W2387288480","https://openalex.org/W2146767093","https://openalex.org/W2041041500","https://openalex.org/W1992847598","https://openalex.org/W1667287666"],"abstract_inverted_index":{"Cancer":[0],"is":[1,51,154],"one":[2],"of":[3,23,49,91,126,129,151,228],"the":[4,8,12,20,89,105,127,141,176,221,226,257,264],"diseases":[5],"that":[6,144],"kill":[7],"most":[9,177],"women":[10],"in":[11,67],"world,":[13],"with":[14,64],"breast":[15,101,171,242],"cancer":[16,24,50,68,102,172],"being":[17],"responsible":[18],"for":[19,43,53,120,217,252,260,271],"highest":[21],"number":[22],"cases":[25],"and":[26,139,165,169,173,183,220,240,255,262],"consequently":[27],"deaths.":[28],"However,":[29],"it":[30],"can":[31,232],"be":[32,77,116,233],"prevented":[33],"by":[34],"early":[35,39],"detection":[36,44],"and,":[37],"consequently,":[38],"treatment.":[40],"Any":[41],"development":[42],"or":[45,197,250],"perdition":[46],"this":[47,152],"kind":[48],"important":[52],"a":[54,62,78,211,215,236],"better":[55],"healthy":[56],"life.":[57],"Many":[58],"studies":[59,188],"focus":[60],"on":[61,97,104],"model":[63,142],"high":[65],"accuracy":[66,72],"prediction,":[69],"but":[70,199],"sometimes":[71],"alone":[73],"may":[74],"not":[75],"always":[76],"reliable":[79],"metric.":[80,107],"This":[81],"study":[82,153],"implies":[83],"an":[84,117],"investigative":[85],"approach":[86],"to":[87,99,115,137,155,167,174,192,224,238,247],"studying":[88],"performance":[90],"different":[92],"machine":[93,109],"learning":[94,110],"algorithms":[95,111,159,194,209],"based":[96],"boosting":[98,158,208],"predict":[100,168,241],"focusing":[103],"recall":[106,251],"Boosting":[108],"has":[112,134,203],"been":[113,135],"proven":[114],"effective":[118,178],"tool":[119],"detecting":[121],"medical":[122],"diseases.":[123],"The":[124,148],"dataset":[125],"University":[128],"California,":[130],"Irvine":[131],"(UCI)":[132],"repository":[133],"utilized":[136],"train":[138],"test":[140],"classifier":[143],"contains":[145],"their":[146],"attributes.":[147],"main":[149],"objective":[150],"use":[156],"state-of-the-art":[157],"such":[160],"as":[161,235],"AdaBoost,":[162],"XGBoost,":[163],"CatBoost":[164],"LightGBM":[166],"diagnose":[170],"find":[175],"metric":[179],"regarding":[180],"recall,":[181],"ROC-AUC,":[182],"confusion":[184],"matrix.":[185],"Furthermore,":[186],"previous":[187],"have":[189],"applied":[190],"Optuna":[191,213],"individual":[193],"like":[195],"XGBoost":[196],"LightGBM,":[198],"no":[200],"prior":[201],"research":[202],"collectively":[204],"examined":[205],"all":[206,253,272],"four":[207],"within":[210],"unified":[212],"framework,":[214],"library":[216],"hyperparameter":[218],"optimization,":[219],"SHAP":[222],"method":[223],"improve":[225,248],"interpretability":[227],"our":[229],"model,":[230],"which":[231],"used":[234],"support":[237],"identify":[239],"cancer.":[243],"We":[244],"were":[245,267],"able":[246],"AUC":[249,266],"themodels":[254],"reduce":[256],"False":[258],"Negative":[259],"AdaBoost":[261],"LigthGBM":[263],"final":[265],"more":[268],"than":[269],"99.41%":[270],"models.":[273]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4405004258","counts_by_year":[],"updated_date":"2024-12-15T20:56:09.254337","created_date":"2024-12-05"}