{"id":"https://openalex.org/W3209718219","doi":"https://doi.org/10.4018/jitr.2022010103","title":"Deep Stacked Autoencoder-Based Automatic Emotion Recognition Using an Efficient Hybrid Local Texture Descriptor","display_name":"Deep Stacked Autoencoder-Based Automatic Emotion Recognition Using an Efficient Hybrid Local Texture Descriptor","publication_year":2021,"publication_date":"2021-10-29","ids":{"openalex":"https://openalex.org/W3209718219","doi":"https://doi.org/10.4018/jitr.2022010103","mag":"3209718219"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.4018/jitr.2022010103","pdf_url":"https://www.igi-global.com/ViewTitle.aspx?TitleId=282708&isxn=9781683180340","source":{"id":"https://openalex.org/S138592535","display_name":"Journal of Information Technology Research","issn_l":"1938-7857","issn":["1938-7857","1938-7865"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320424","host_organization_name":"IGI Global","host_organization_lineage":["https://openalex.org/P4310320424"],"host_organization_lineage_names":["IGI Global"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.igi-global.com/ViewTitle.aspx?TitleId=282708&isxn=9781683180340","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5010607279","display_name":"Shanthi Pitchaiyan","orcid":null},"institutions":[{"id":"https://openalex.org/I122964287","display_name":"National Institute of Technology Tiruchirappalli","ror":"https://ror.org/047x65e68","country_code":"IN","type":"education","lineage":["https://openalex.org/I122964287"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Shanthi Pitchaiyan","raw_affiliation_strings":["National Institute of Technology, Tiruchirappalli, India"],"affiliations":[{"raw_affiliation_string":"National Institute of Technology, Tiruchirappalli, India","institution_ids":["https://openalex.org/I122964287"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5022010331","display_name":"S. Nickolas","orcid":"https://orcid.org/0000-0002-0703-3839"},"institutions":[{"id":"https://openalex.org/I122964287","display_name":"National Institute of Technology Tiruchirappalli","ror":"https://ror.org/047x65e68","country_code":"IN","type":"education","lineage":["https://openalex.org/I122964287"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Nickolas Savarimuthu","raw_affiliation_strings":["National Institute of Technology, Tiruchirappalli, India"],"affiliations":[{"raw_affiliation_string":"National Institute of Technology, Tiruchirappalli, India","institution_ids":["https://openalex.org/I122964287"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":57},"biblio":{"volume":"15","issue":"1","first_page":"1","last_page":"26"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T13731","display_name":"Advanced Computing and Algorithms","score":0.9795,"subfield":{"id":"https://openalex.org/subfields/3322","display_name":"Urban Studies"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T13731","display_name":"Advanced Computing and Algorithms","score":0.9795,"subfield":{"id":"https://openalex.org/subfields/3322","display_name":"Urban Studies"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.945,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10667","display_name":"Emotion and Mood Recognition","score":0.9095,"subfield":{"id":"https://openalex.org/subfields/3205","display_name":"Experimental and Cognitive Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/local-binary-patterns","display_name":"Local Binary Patterns","score":0.87104213},{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.6186718},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5549369},{"id":"https://openalex.org/keywords/texture","display_name":"Texture (cosmology)","score":0.45620537}],"concepts":[{"id":"https://openalex.org/C87335442","wikidata":"https://www.wikidata.org/wiki/Q2494345","display_name":"Local binary patterns","level":4,"score":0.87104213},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.8428217},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.71096057},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.69994706},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.68212146},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.6186718},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5549369},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.49299023},{"id":"https://openalex.org/C2781195486","wikidata":"https://www.wikidata.org/wiki/Q289436","display_name":"Texture (cosmology)","level":3,"score":0.45620537},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.41114277},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.31865573},{"id":"https://openalex.org/C53533937","wikidata":"https://www.wikidata.org/wiki/Q185020","display_name":"Histogram","level":3,"score":0.2889916},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.25080776},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.4018/jitr.2022010103","pdf_url":"https://www.igi-global.com/ViewTitle.aspx?TitleId=282708&isxn=9781683180340","source":{"id":"https://openalex.org/S138592535","display_name":"Journal of Information Technology Research","issn_l":"1938-7857","issn":["1938-7857","1938-7865"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320424","host_organization_name":"IGI Global","host_organization_lineage":["https://openalex.org/P4310320424"],"host_organization_lineage_names":["IGI Global"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.4018/jitr.2022010103","pdf_url":"https://www.igi-global.com/ViewTitle.aspx?TitleId=282708&isxn=9781683180340","source":{"id":"https://openalex.org/S138592535","display_name":"Journal of Information Technology Research","issn_l":"1938-7857","issn":["1938-7857","1938-7865"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320424","host_organization_name":"IGI Global","host_organization_lineage":["https://openalex.org/P4310320424"],"host_organization_lineage_names":["IGI Global"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":51,"referenced_works":["https://openalex.org/W1628541567","https://openalex.org/W1983321919","https://openalex.org/W2001412060","https://openalex.org/W2012982311","https://openalex.org/W2017408678","https://openalex.org/W2038952578","https://openalex.org/W2070574643","https://openalex.org/W2079712593","https://openalex.org/W2098693229","https://openalex.org/W2102570318","https://openalex.org/W2103943262","https://openalex.org/W2136922672","https://openalex.org/W2145310492","https://openalex.org/W2163352848","https://openalex.org/W2164878725","https://openalex.org/W2181824145","https://openalex.org/W2289846183","https://openalex.org/W2292254049","https://openalex.org/W2338355707","https://openalex.org/W2487852963","https://openalex.org/W2551403050","https://openalex.org/W2552269658","https://openalex.org/W2587043449","https://openalex.org/W2620139344","https://openalex.org/W2629163415","https://openalex.org/W2728649596","https://openalex.org/W2746403246","https://openalex.org/W2750692136","https://openalex.org/W2766654026","https://openalex.org/W2780921808","https://openalex.org/W2782211501","https://openalex.org/W2782360958","https://openalex.org/W2789276341","https://openalex.org/W2796830519","https://openalex.org/W2803088313","https://openalex.org/W2805781993","https://openalex.org/W2808063523","https://openalex.org/W2890694965","https://openalex.org/W2893935103","https://openalex.org/W2900925582","https://openalex.org/W2907656006","https://openalex.org/W2909296529","https://openalex.org/W2910358611","https://openalex.org/W2912139893","https://openalex.org/W2912628469","https://openalex.org/W2913922702","https://openalex.org/W2945866629","https://openalex.org/W2976153122","https://openalex.org/W2980468885","https://openalex.org/W3097096317","https://openalex.org/W4249547329"],"related_works":["https://openalex.org/W4297051394","https://openalex.org/W3131327266","https://openalex.org/W3013693939","https://openalex.org/W2770255720","https://openalex.org/W2752972570","https://openalex.org/W2566616303","https://openalex.org/W2159052453","https://openalex.org/W2055219403","https://openalex.org/W1589677080","https://openalex.org/W1509533962"],"abstract_inverted_index":{"Extracting":[0],"an":[1,11,147],"effective":[2],"facial":[3,29],"feature":[4,27,112],"representation":[5],"is":[6,20,55,119],"the":[7,38,58,71,96,102,107,114,122,129,133,141],"critical":[8],"task":[9],"for":[10,28,153,156,160],"automatic":[12,78],"expression":[13,30],"recognition":[14,149],"system.":[15],"Local":[16,50,62],"Binary":[17],"Pattern":[18],"(LBP)":[19],"known":[21],"to":[22,69],"be":[23],"a":[24,34,48],"popular":[25],"texture":[26,84],"recognition.":[31,80],"However,":[32],"only":[33],"few":[35],"approaches":[36],"utilize":[37],"relationship":[39,76,105],"between":[40],"local":[41],"neighborhood":[42],"pixels":[43],"itself.":[44],"This":[45],"paper":[46],"presents":[47],"Hybrid":[49],"Texture":[51],"Descriptor":[52],"(HLTD)":[53],"which":[54],"derived":[56],"from":[57],"logical":[59,111],"fusion":[60],"of":[61,73,95,106,140,143,151],"Neighborhood":[63],"XNOR":[64],"Patterns":[65],"(LNXP)":[66],"and":[67,125,128,158],"LBP":[68,100],"investigate":[70],"potential":[72],"positional":[74],"pixel":[75,94,98,104],"in":[77],"emotion":[79],"The":[81],"LNXP":[82],"encodes":[83,101],"information":[85],"based":[86,136],"on":[87,121],"two":[88],"nearest":[89],"vertical":[90],"and/or":[91],"horizontal":[92],"neighboring":[93,108],"current":[97],"whereas":[99],"center":[103],"pixel.":[109],"After":[110],"fusion,":[113],"Deep":[115],"Stacked":[116],"Autoencoder":[117],"(DSA)":[118],"established":[120],"CK+,":[123,154],"MMI":[124,157],"KDEF-dyn":[126],"dataset":[127],"results":[130],"show":[131],"that":[132],"proposed":[134],"HLTD":[135],"approach":[137],"outperforms":[138],"many":[139],"state":[142],"art":[144],"methods":[145],"with":[146],"average":[148],"rate":[150],"97.5%":[152],"94.1%":[155],"88.5%":[159],"KDEF.":[161]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3209718219","counts_by_year":[],"updated_date":"2024-12-15T22:44:42.809095","created_date":"2021-11-08"}