{"id":"https://openalex.org/W1972540940","doi":"https://doi.org/10.4018/jaec.2011100104","title":"An Effective Hybrid Semi-Parametric Regression Strategy for Rainfall Forecasting Combining Linear and Nonlinear Regression","display_name":"An Effective Hybrid Semi-Parametric Regression Strategy for Rainfall Forecasting Combining Linear and Nonlinear Regression","publication_year":2011,"publication_date":"2011-10-01","ids":{"openalex":"https://openalex.org/W1972540940","doi":"https://doi.org/10.4018/jaec.2011100104","mag":"1972540940"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.4018/jaec.2011100104","pdf_url":null,"source":{"id":"https://openalex.org/S144758376","display_name":"International Journal of Applied Evolutionary Computation","issn_l":"1942-3594","issn":["1942-3594","1942-3608"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":"https://openalex.org/P4310320424","host_organization_name":"IGI Global","host_organization_lineage":["https://openalex.org/P4310320424"],"host_organization_lineage_names":["IGI Global"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100599435","display_name":"Jian Wu","orcid":"https://orcid.org/0000-0002-3394-1507"},"institutions":[{"id":"https://openalex.org/I196699116","display_name":"Wuhan University of Technology","ror":"https://ror.org/03fe7t173","country_code":"CN","type":"funder","lineage":["https://openalex.org/I196699116"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Jiansheng Wu","raw_affiliation_strings":["Wuhan University of Technology and Liuzhou Teachers College, China#TAB#"],"affiliations":[{"raw_affiliation_string":"Wuhan University of Technology and Liuzhou Teachers College, China#TAB#","institution_ids":["https://openalex.org/I196699116"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5100599435"],"corresponding_institution_ids":["https://openalex.org/I196699116"],"apc_list":null,"apc_paid":null,"fwci":2.238,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":16,"citation_normalized_percentile":{"value":0.762759,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":88,"max":89},"biblio":{"volume":"2","issue":"4","first_page":"50","last_page":"65"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11490","display_name":"Hydrological Forecasting Using AI","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11490","display_name":"Hydrological Forecasting Using AI","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11186","display_name":"Hydrology and Drought Analysis","score":0.9934,"subfield":{"id":"https://openalex.org/subfields/2306","display_name":"Global and Planetary Change"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/principal-component-regression","display_name":"Principal component regression","score":0.4448514},{"id":"https://openalex.org/keywords/ensemble-forecasting","display_name":"Ensemble forecasting","score":0.41225216}],"concepts":[{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.64294755},{"id":"https://openalex.org/C158622935","wikidata":"https://www.wikidata.org/wiki/Q660848","display_name":"Nonlinear system","level":2,"score":0.62521714},{"id":"https://openalex.org/C117251300","wikidata":"https://www.wikidata.org/wiki/Q1849855","display_name":"Parametric statistics","level":2,"score":0.62186766},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6022512},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.5594548},{"id":"https://openalex.org/C48921125","wikidata":"https://www.wikidata.org/wiki/Q10861030","display_name":"Linear regression","level":2,"score":0.4759569},{"id":"https://openalex.org/C152877465","wikidata":"https://www.wikidata.org/wiki/Q208042","display_name":"Regression analysis","level":2,"score":0.46758032},{"id":"https://openalex.org/C46889948","wikidata":"https://www.wikidata.org/wiki/Q2755024","display_name":"Nonlinear regression","level":3,"score":0.45776537},{"id":"https://openalex.org/C27438332","wikidata":"https://www.wikidata.org/wiki/Q2873","display_name":"Principal component analysis","level":2,"score":0.4499418},{"id":"https://openalex.org/C74887250","wikidata":"https://www.wikidata.org/wiki/Q3455892","display_name":"Principal component regression","level":3,"score":0.4448514},{"id":"https://openalex.org/C119898033","wikidata":"https://www.wikidata.org/wiki/Q3433888","display_name":"Ensemble forecasting","level":2,"score":0.41225216},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.35223073},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.32228684},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.29738447},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.28178412},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.23998404},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.23178148},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.4018/jaec.2011100104","pdf_url":null,"source":{"id":"https://openalex.org/S144758376","display_name":"International Journal of Applied Evolutionary Computation","issn_l":"1942-3594","issn":["1942-3594","1942-3608"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":"https://openalex.org/P4310320424","host_organization_name":"IGI Global","host_organization_lineage":["https://openalex.org/P4310320424"],"host_organization_lineage_names":["IGI Global"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.81,"id":"https://metadata.un.org/sdg/13","display_name":"Climate action"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":33,"referenced_works":["https://openalex.org/W135795571","https://openalex.org/W1535006492","https://openalex.org/W1538983967","https://openalex.org/W1540147630","https://openalex.org/W1621285505","https://openalex.org/W1990994334","https://openalex.org/W1996150433","https://openalex.org/W2001593107","https://openalex.org/W2001675020","https://openalex.org/W2004630602","https://openalex.org/W2013704165","https://openalex.org/W2018519044","https://openalex.org/W2021386313","https://openalex.org/W2023430894","https://openalex.org/W2044346605","https://openalex.org/W2053816212","https://openalex.org/W2057446454","https://openalex.org/W2080690725","https://openalex.org/W2087884045","https://openalex.org/W2105613465","https://openalex.org/W2108502841","https://openalex.org/W2117014758","https://openalex.org/W2126843316","https://openalex.org/W2135293965","https://openalex.org/W2313953460","https://openalex.org/W2502852798","https://openalex.org/W27638224","https://openalex.org/W277476920","https://openalex.org/W2911604093","https://openalex.org/W3146386673","https://openalex.org/W3195708820","https://openalex.org/W333475664","https://openalex.org/W4285719527"],"related_works":["https://openalex.org/W3169054160","https://openalex.org/W2977185326","https://openalex.org/W2949654757","https://openalex.org/W2732229642","https://openalex.org/W2383457581","https://openalex.org/W2365630391","https://openalex.org/W2361156939","https://openalex.org/W2029697302","https://openalex.org/W2018465011","https://openalex.org/W2004127797"],"abstract_inverted_index":{"Rainfall":[0],"forecasting":[1,39,63,166,173],"is":[2,77,114,136],"an":[3,69],"important":[4],"research":[5],"topic":[6],"in":[7,62,145,156],"disaster":[8],"prevention":[9],"and":[10,31,55,96,175],"reduction.":[11],"The":[12,111,152],"characteristic":[13],"of":[14,25,147],"rainfall":[15,64,80,93,108,169],"involves":[16],"a":[17,50,59,163],"rather":[18],"complex":[19],"systematic":[20],"dynamics":[21],"under":[22],"the":[23,121,130,133,148],"influence":[24],"different":[26],"meteorological":[27],"factors,":[28],"including":[29],"linear":[30,86,94],"nonlinear":[32,51,98,109],"pattern.":[33],"Recently,":[34],"many":[35],"approaches":[36],"to":[37,91,106,170],"improve":[38,176],"accuracy":[40,174],"have":[41],"been":[42],"introduced.":[43],"Artificial":[44],"neural":[45],"network":[46],"(ANN),":[47],"which":[48],"performs":[49],"mapping":[52],"between":[53],"inputs":[54],"outputs,":[56],"has":[57],"played":[58],"crucial":[60],"role":[61],"data.":[65],"In":[66,82],"this":[67,83,157],"paper,":[68],"effective":[70],"hybrid":[71],"semi-parametric":[72,112],"regression":[73,87,99,113],"ensemble":[74,117],"(SRE)":[75],"model":[76,118,135,154],"presented":[78],"for":[79,116,168],"forecasting.":[81],"model,":[84],"three":[85,97],"models":[88,100,144],"are":[89,104],"used":[90,115,161],"capture":[92,107],"characteristics":[95],"based":[101,119],"on":[102,120],"ANN":[103],"able":[105],"characteristics.":[110],"principal":[122],"component":[123],"analysis":[124],"technique.":[125],"Empirical":[126],"results":[127],"reveal":[128],"that":[129],"prediction":[131,177],"using":[132,142],"SRE":[134,153],"generally":[137],"better":[138],"than":[139],"those":[140],"obtained":[141],"other":[143],"terms":[146],"same":[149],"evaluation":[150],"measurements.":[151],"proposed":[155],"paper":[158],"can":[159],"be":[160],"as":[162],"promising":[164],"alternative":[165],"tool":[167],"achieve":[171],"greater":[172],"quality.":[178]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1972540940","counts_by_year":[{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":1},{"year":2016,"cited_by_count":1},{"year":2015,"cited_by_count":1},{"year":2014,"cited_by_count":1},{"year":2013,"cited_by_count":3},{"year":2012,"cited_by_count":6}],"updated_date":"2025-04-24T06:04:34.227478","created_date":"2016-06-24"}