{"id":"https://openalex.org/W3125386991","doi":"https://doi.org/10.4018/ijmdem.2021010103","title":"A Comparative Study of Graph Kernels and Clustering Algorithms","display_name":"A Comparative Study of Graph Kernels and Clustering Algorithms","publication_year":2021,"publication_date":"2021-01-01","ids":{"openalex":"https://openalex.org/W3125386991","doi":"https://doi.org/10.4018/ijmdem.2021010103","mag":"3125386991"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.4018/ijmdem.2021010103","pdf_url":null,"source":{"id":"https://openalex.org/S87630009","display_name":"International Journal of Multimedia Data Engineering and Management","issn_l":"1947-8534","issn":["1947-8534","1947-8542"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":"https://openalex.org/P4310320424","host_organization_name":"IGI Global","host_organization_lineage":["https://openalex.org/P4310320424"],"host_organization_lineage_names":["IGI Global"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5016923140","display_name":"Riju Bhattacharya","orcid":"https://orcid.org/0000-0002-9265-5746"},"institutions":[{"id":"https://openalex.org/I38335241","display_name":"National Institute of Technology Raipur","ror":"https://ror.org/02y553197","country_code":"IN","type":"funder","lineage":["https://openalex.org/I38335241"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Riju Bhattacharya","raw_affiliation_strings":["National Institute of Technology, Raipur, India"],"affiliations":[{"raw_affiliation_string":"National Institute of Technology, Raipur, India","institution_ids":["https://openalex.org/I38335241"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5007549080","display_name":"Naresh Kumar Nagwani","orcid":"https://orcid.org/0000-0001-5306-5818"},"institutions":[{"id":"https://openalex.org/I38335241","display_name":"National Institute of Technology Raipur","ror":"https://ror.org/02y553197","country_code":"IN","type":"funder","lineage":["https://openalex.org/I38335241"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Naresh Kumar Nagwani","raw_affiliation_strings":["National Institute of Technology, Raipur, India"],"affiliations":[{"raw_affiliation_string":"National Institute of Technology, Raipur, India","institution_ids":["https://openalex.org/I38335241"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5029037363","display_name":"Sarsij Tripathi","orcid":"https://orcid.org/0000-0003-0873-2102"},"institutions":[{"id":"https://openalex.org/I152869788","display_name":"Motilal Nehru National Institute of Technology","ror":"https://ror.org/04dp7tp96","country_code":"IN","type":"funder","lineage":["https://openalex.org/I152869788"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Sarsij Tripathi","raw_affiliation_strings":["Motilal Nehru National Institute of Technology, Allahabad, India"],"affiliations":[{"raw_affiliation_string":"Motilal Nehru National Institute of Technology, Allahabad, India","institution_ids":["https://openalex.org/I152869788"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":56},"biblio":{"volume":"12","issue":"1","first_page":"33","last_page":"48"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10064","display_name":"Complex Network Analysis Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10064","display_name":"Complex Network Analysis Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10637","display_name":"Advanced Clustering Algorithms Research","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/graph-kernel","display_name":"Graph kernel","score":0.44573215},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.44118673}],"concepts":[{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.64059037},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.50890684},{"id":"https://openalex.org/C100595998","wikidata":"https://www.wikidata.org/wiki/Q11731931","display_name":"Graph kernel","level":5,"score":0.44573215},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.44118673},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.39411718},{"id":"https://openalex.org/C122280245","wikidata":"https://www.wikidata.org/wiki/Q620622","display_name":"Kernel method","level":3,"score":0.3247049},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.32357985},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.31337485},{"id":"https://openalex.org/C182335926","wikidata":"https://www.wikidata.org/wiki/Q17093020","display_name":"Kernel principal component analysis","level":4,"score":0.2907175},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.11201149},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.4018/ijmdem.2021010103","pdf_url":null,"source":{"id":"https://openalex.org/S87630009","display_name":"International Journal of Multimedia Data Engineering and Management","issn_l":"1947-8534","issn":["1947-8534","1947-8542"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":"https://openalex.org/P4310320424","host_organization_name":"IGI Global","host_organization_lineage":["https://openalex.org/P4310320424"],"host_organization_lineage_names":["IGI Global"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W1977556410","https://openalex.org/W1987971958","https://openalex.org/W2011832962","https://openalex.org/W2012165244","https://openalex.org/W2027264060","https://openalex.org/W2029064186","https://openalex.org/W2056562706","https://openalex.org/W2133098435","https://openalex.org/W2135364554","https://openalex.org/W2142498761","https://openalex.org/W2159156271","https://openalex.org/W2161494102","https://openalex.org/W2591291103","https://openalex.org/W2776454016","https://openalex.org/W2911738047","https://openalex.org/W2954365303","https://openalex.org/W3147254695","https://openalex.org/W3152026761"],"related_works":["https://openalex.org/W945329738","https://openalex.org/W3006070568","https://openalex.org/W2995560269","https://openalex.org/W2363184354","https://openalex.org/W2189183545","https://openalex.org/W2179275589","https://openalex.org/W2170018389","https://openalex.org/W2156717698","https://openalex.org/W2103255843","https://openalex.org/W1983263273"],"abstract_inverted_index":{"Graph":[0],"kernels":[1],"have":[2,54,141],"evolved":[3],"as":[4,104],"a":[5],"promising":[6],"and":[7,51,73,107,137],"popular":[8],"method":[9,125],"for":[10,29,57,64,120,126],"graph":[11,26,30,36,58,128,146],"clustering":[12,31,61,76,86,147],"over":[13,84],"the":[14,23,65,85,108,112,122],"last":[15],"decade.":[16],"In":[17],"this":[18],"work,":[19],"comparative":[20,79,113],"study":[21,80],"on":[22,90],"five":[24],"standard":[25],"kernel":[27,53,66,82,124,140],"techniques":[28,87],"has":[32],"been":[33,55],"performed.":[34],"The":[35,60,78,130],"kernels,":[37],"namely":[38],"vertex":[39],"histogram":[40],"kernel,":[41,44,46,50],"shortest":[42,138],"path":[43,139],"graphlet":[45],"k-step":[47,134],"random":[48,135],"walk":[49,136],"Weisfeiler-Lehman":[52],"compared":[56],"clustering.":[59,129],"methods":[62,83],"considered":[63],"comparison":[67],"are":[68],"hierarchical,":[69],"k-means,":[70],"model-based,":[71],"fuzzy-based,":[72],"self-organizing":[74],"map":[75],"techniques.":[77],"of":[81],"is":[88,96,115],"performed":[89,142],"MUTAG":[91],"benchmark":[92],"dataset.":[93],"Clustering":[94],"performance":[95,101],"assessed":[97],"with":[98],"internal":[99],"validation":[100],"parameters":[102],"such":[103],"connectivity,":[105],"Dunn,":[106],"silhouette":[109],"index.":[110],"Finally,":[111],"analysis":[114],"done":[116],"to":[117],"facilitate":[118],"researchers":[119],"selecting":[121],"appropriate":[123],"effective":[127],"proposed":[131],"methodology":[132],"elicits":[133],"best":[143],"among":[144],"all":[145],"approaches.":[148]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3125386991","counts_by_year":[],"updated_date":"2025-04-04T01:48:42.114324","created_date":"2021-02-01"}