{"id":"https://openalex.org/W3196912189","doi":"https://doi.org/10.4018/ijcvip.2021100101","title":"Abnormal Event Detection in a Surveillance Scene Using Convolutional Neural Network","display_name":"Abnormal Event Detection in a Surveillance Scene Using Convolutional Neural Network","publication_year":2021,"publication_date":"2021-09-07","ids":{"openalex":"https://openalex.org/W3196912189","doi":"https://doi.org/10.4018/ijcvip.2021100101","mag":"3196912189"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.4018/ijcvip.2021100101","pdf_url":null,"source":{"id":"https://openalex.org/S4210177549","display_name":"International Journal of Computer Vision and Image Processing","issn_l":"2155-6989","issn":["2155-6989","2155-6997"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320424","host_organization_name":"IGI Global","host_organization_lineage":["https://openalex.org/P4310320424"],"host_organization_lineage_names":["IGI Global"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5083094642","display_name":"Kinjal Joshi","orcid":"https://orcid.org/0000-0001-8089-999X"},"institutions":[{"id":"https://openalex.org/I29563240","display_name":"Gujarat Technological University","ror":"https://ror.org/059x8vm09","country_code":"IN","type":"education","lineage":["https://openalex.org/I29563240"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Kinjal V. Joshi","raw_affiliation_strings":["Gujrat Technological University, India"],"affiliations":[{"raw_affiliation_string":"Gujrat Technological University, India","institution_ids":["https://openalex.org/I29563240"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5111117966","display_name":"Narendra Patel","orcid":null},"institutions":[{"id":"https://openalex.org/I29563240","display_name":"Gujarat Technological University","ror":"https://ror.org/059x8vm09","country_code":"IN","type":"education","lineage":["https://openalex.org/I29563240"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Narendra M. Patel","raw_affiliation_strings":["Gujarat Technological University, India"],"affiliations":[{"raw_affiliation_string":"Gujarat Technological University, India","institution_ids":["https://openalex.org/I29563240"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.114,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.444234,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":57,"max":67},"biblio":{"volume":"11","issue":"4","first_page":"1","last_page":"20"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":0.9952,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11819","display_name":"Data-Driven Disease Surveillance","score":0.9798,"subfield":{"id":"https://openalex.org/subfields/2713","display_name":"Epidemiology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.780645},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.44300404}],"concepts":[{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.78692245},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7855938},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.780645},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.71142757},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.7049451},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6205201},{"id":"https://openalex.org/C2779662365","wikidata":"https://www.wikidata.org/wiki/Q5416694","display_name":"Event (particle physics)","level":2,"score":0.6130601},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.6107868},{"id":"https://openalex.org/C58471807","wikidata":"https://www.wikidata.org/wiki/Q327120","display_name":"Receiver operating characteristic","level":2,"score":0.49356592},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.44300404},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.2825056},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.4018/ijcvip.2021100101","pdf_url":null,"source":{"id":"https://openalex.org/S4210177549","display_name":"International Journal of Computer Vision and Image Processing","issn_l":"2155-6989","issn":["2155-6989","2155-6997"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320424","host_organization_name":"IGI Global","host_organization_lineage":["https://openalex.org/P4310320424"],"host_organization_lineage_names":["IGI Global"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.5,"display_name":"Peace, justice, and strong institutions","id":"https://metadata.un.org/sdg/16"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W1967456674","https://openalex.org/W1969319493","https://openalex.org/W2015543695","https://openalex.org/W2039430607","https://openalex.org/W2047617665","https://openalex.org/W2079023123","https://openalex.org/W2110383222","https://openalex.org/W2164261375","https://openalex.org/W2286655808","https://openalex.org/W2418033038","https://openalex.org/W2460849547","https://openalex.org/W2527524734","https://openalex.org/W2540481276","https://openalex.org/W2552244384","https://openalex.org/W2587789887","https://openalex.org/W2605950864","https://openalex.org/W2790571983","https://openalex.org/W2888511862","https://openalex.org/W2903380502","https://openalex.org/W3002842489"],"related_works":["https://openalex.org/W972276598","https://openalex.org/W4385649027","https://openalex.org/W4321353415","https://openalex.org/W4246352526","https://openalex.org/W2745001401","https://openalex.org/W2378211422","https://openalex.org/W2130974462","https://openalex.org/W2087343574","https://openalex.org/W2086519370","https://openalex.org/W2028665553"],"abstract_inverted_index":{"Automatic":[0],"abnormal":[1,47],"event":[2,48],"detection":[3],"in":[4,49,59],"a":[5,37,50,73],"surveillance":[6,51],"scene":[7],"is":[8,25,57,64,77,87,128],"very":[9],"significant":[10],"because":[11],"of":[12,19,123,148],"more":[13],"consciousness":[14],"about":[15],"public":[16],"safety.":[17],"Because":[18],"usefulness":[20],"and":[21,70,82,115,132],"complexity,":[22],"currently,":[23],"it":[24,63],"an":[26,46],"open":[27],"research":[28],"area.":[29],"In":[30,53,72],"this":[31,54],"manuscript,":[32],"the":[33,94,135,146,149],"authors":[34],"have":[35],"proposed":[36,95,150],"novel":[38],"convolutional":[39],"neural":[40],"network":[41],"(CNN)":[42],"model":[43,96],"to":[44,101],"detect":[45],"scene.":[52],"work,":[55],"CNN":[56,76],"used":[58,65,78,88],"two":[60],"ways.":[61],"Firstly,":[62],"for":[66,79,89],"both":[67],"feature":[68,80],"extraction":[69],"classification.":[71,90],"second":[74],"way,":[75],"extraction,":[81],"support":[83],"vector":[84],"machine":[85],"(SVM)":[86],"Without":[91],"any":[92],"pre-processing,":[93],"gives":[97],"better":[98],"results":[99,144],"compared":[100],"state-of-the-art":[102],"methods.":[103],"Experiments":[104],"are":[105],"carried":[106],"out":[107],"on":[108],"four":[109,124],"different":[110],"publicly":[111],"available":[112],"benchmark":[113],"datasets":[114],"one":[116],"combined":[117],"dataset,":[118],"which":[119],"contains":[120],"all":[121],"images":[122],"datasets.":[125],"The":[126,142],"performance":[127],"measured":[129],"by":[130],"accuracy":[131],"area":[133],"under":[134],"ROC":[136],"(receiver":[137],"operating":[138],"characteristic)":[139],"curve":[140],"(AUC).":[141],"experimental":[143],"determine":[145],"efficacy":[147],"model.":[151]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3196912189","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2024-12-16T08:44:42.336465","created_date":"2021-09-13"}