{"id":"https://openalex.org/W2997423508","doi":"https://doi.org/10.4018/ijcvip.2020010104","title":"Effective Technique to Reduce the Dimension of Text Data","display_name":"Effective Technique to Reduce the Dimension of Text Data","publication_year":2019,"publication_date":"2019-12-23","ids":{"openalex":"https://openalex.org/W2997423508","doi":"https://doi.org/10.4018/ijcvip.2020010104","mag":"2997423508"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.4018/ijcvip.2020010104","pdf_url":null,"source":{"id":"https://openalex.org/S4210177549","display_name":"International Journal of Computer Vision and Image Processing","issn_l":"2155-6989","issn":["2155-6989","2155-6997"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":"https://openalex.org/P4310320424","host_organization_name":"IGI Global","host_organization_lineage":["https://openalex.org/P4310320424"],"host_organization_lineage_names":["IGI Global"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5076766601","display_name":"D. S. Guru","orcid":null},"institutions":[{"id":"https://openalex.org/I204743663","display_name":"University of Mysore","ror":"https://ror.org/012bxv356","country_code":"IN","type":"funder","lineage":["https://openalex.org/I204743663"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"D.S. Guru","raw_affiliation_strings":["Department of Studies in Computer Science, University of Mysore, Mysore, India"],"affiliations":[{"raw_affiliation_string":"Department of Studies in Computer Science, University of Mysore, Mysore, India","institution_ids":["https://openalex.org/I204743663"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101934745","display_name":"K. S. Swarnalatha","orcid":null},"institutions":[],"countries":["IN"],"is_corresponding":false,"raw_author_name":"K. Swarnalatha","raw_affiliation_strings":["MIT Thandavapura, India"],"affiliations":[{"raw_affiliation_string":"MIT Thandavapura, India","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101702776","display_name":"N. Vinay Kumar","orcid":null},"institutions":[{"id":"https://openalex.org/I204743663","display_name":"University of Mysore","ror":"https://ror.org/012bxv356","country_code":"IN","type":"funder","lineage":["https://openalex.org/I204743663"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"N. Vinay Kumar","raw_affiliation_strings":["Department of Studies in Computer Science, University of Mysore, Mysore, India"],"affiliations":[{"raw_affiliation_string":"Department of Studies in Computer Science, University of Mysore, Mysore, India","institution_ids":["https://openalex.org/I204743663"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5046620481","display_name":"Basavaraj S. Anami","orcid":"https://orcid.org/0000-0001-6281-8666"},"institutions":[{"id":"https://openalex.org/I182663762","display_name":"Lingaya's Vidyapeeth","ror":"https://ror.org/01vwns954","country_code":"IN","type":"education","lineage":["https://openalex.org/I182663762"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Basavaraj S. Anami","raw_affiliation_strings":["Karnataka Lingayat Education Institute of Technology, Karnataka, India"],"affiliations":[{"raw_affiliation_string":"Karnataka Lingayat Education Institute of Technology, Karnataka, India","institution_ids":["https://openalex.org/I182663762"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.282,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.599613,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":74,"max":76},"biblio":{"volume":"10","issue":"1","first_page":"67","last_page":"85"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11644","display_name":"Spam and Phishing Detection","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.45852888},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.4374177}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7287592},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.66701996},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.5538065},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.54552734},{"id":"https://openalex.org/C189430467","wikidata":"https://www.wikidata.org/wiki/Q7293293","display_name":"Ranking (information retrieval)","level":2,"score":0.54348445},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.5194161},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.48980448},{"id":"https://openalex.org/C33676613","wikidata":"https://www.wikidata.org/wiki/Q13415176","display_name":"Dimension (graph theory)","level":2,"score":0.4874773},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.45852888},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.4484876},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.4374177},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.16743857},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.07884833},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.4018/ijcvip.2020010104","pdf_url":null,"source":{"id":"https://openalex.org/S4210177549","display_name":"International Journal of Computer Vision and Image Processing","issn_l":"2155-6989","issn":["2155-6989","2155-6997"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":"https://openalex.org/P4310320424","host_organization_name":"IGI Global","host_organization_lineage":["https://openalex.org/P4310320424"],"host_organization_lineage_names":["IGI Global"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":35,"referenced_works":["https://openalex.org/W1426199569","https://openalex.org/W1535854520","https://openalex.org/W1572163287","https://openalex.org/W1595613095","https://openalex.org/W1730404227","https://openalex.org/W1973637371","https://openalex.org/W1980688822","https://openalex.org/W1998771787","https://openalex.org/W2001141328","https://openalex.org/W2013208103","https://openalex.org/W2053186076","https://openalex.org/W2064580901","https://openalex.org/W2068431618","https://openalex.org/W2087609354","https://openalex.org/W2090702536","https://openalex.org/W2105499314","https://openalex.org/W2105948726","https://openalex.org/W2114080886","https://openalex.org/W2118020653","https://openalex.org/W2127314673","https://openalex.org/W2134090438","https://openalex.org/W2138570191","https://openalex.org/W2158194116","https://openalex.org/W2435251607","https://openalex.org/W2547803751","https://openalex.org/W2583997959","https://openalex.org/W2726112979","https://openalex.org/W2767299237","https://openalex.org/W2782178484","https://openalex.org/W2942499619","https://openalex.org/W2961816673","https://openalex.org/W3100281586","https://openalex.org/W4205699531","https://openalex.org/W4236122429","https://openalex.org/W4292023222"],"related_works":["https://openalex.org/W972276598","https://openalex.org/W4321353415","https://openalex.org/W4246352526","https://openalex.org/W2745001401","https://openalex.org/W2378211422","https://openalex.org/W2130974462","https://openalex.org/W2121910908","https://openalex.org/W2087343574","https://openalex.org/W2086519370","https://openalex.org/W2028665553"],"abstract_inverted_index":{"In":[0],"this":[1,96,159],"article,":[2],"features":[3,12,71,91],"are":[4,21,49,59,72,87,117],"selected":[5,83,90],"using":[6,26,66,124],"feature":[7,77,114,137],"clustering":[8,36],"and":[9,53,74,84,119,150],"ranking":[10,138],"of":[11,56,92,106,129],"for":[13,75],"imbalanced":[14],"text":[15,19],"data.":[16],"Initially":[17],"the":[18,27,41,47,54,62,67,79,93,100,110,130,135,148,151,166],"documents":[20,42,55],"represented":[22,60],"in":[23,43,61],"lower":[24,63],"dimension":[25,101],"term":[28],"class":[29,34],"relevance":[30],"(TCR)":[31],"method.":[32,139],"The":[33,70,127,140,154],"wise":[35],"is":[37,82,121,132,142],"recommended":[38],"to":[39,102,165],"balance":[40],"each":[44,57,76],"class.":[45],"Subsequently,":[46],"clusters":[48],"treated":[50],"as":[51,89],"classes":[52],"cluster":[58,78,80,111],"dimensional":[64],"form":[65],"TCR":[68],"again.":[69],"clustered":[73],"representative":[81],"these":[85],"representatives":[86],"used":[88,118],"documents.":[94],"Hence,":[95],"proposed":[97],"model":[98],"reduces":[99],"a":[103],"smaller":[104],"number":[105],"features.":[107],"For":[108],"selecting":[109],"representative,":[112],"four":[113],"evaluation":[115],"methods":[116],"classification":[120],"done":[122],"by":[123],"SVM":[125],"classifier.":[126],"performance":[128],"method":[131,160],"compared":[133,164],"with":[134],"global":[136],"experiment":[141],"conducted":[143],"on":[144],"two":[145],"benchmark":[146],"datasets":[147],"Reuters-21578":[149],"TDT2":[152],"dataset.":[153],"experimental":[155],"results":[156],"show":[157],"that":[158],"performs":[161],"well":[162],"when":[163],"other":[167],"existing":[168],"works.":[169]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2997423508","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2021,"cited_by_count":2}],"updated_date":"2025-04-21T22:44:19.105225","created_date":"2020-01-10"}