{"id":"https://openalex.org/W2038945204","doi":"https://doi.org/10.4018/ijcini.2010100103","title":"Robust Feature Vector Set Using Higher Order Autocorrelation Coefficients","display_name":"Robust Feature Vector Set Using Higher Order Autocorrelation Coefficients","publication_year":2010,"publication_date":"2010-10-01","ids":{"openalex":"https://openalex.org/W2038945204","doi":"https://doi.org/10.4018/ijcini.2010100103","mag":"2038945204"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.4018/ijcini.2010100103","pdf_url":null,"source":{"id":"https://openalex.org/S157664362","display_name":"International Journal of Cognitive Informatics and Natural Intelligence","issn_l":"1557-3958","issn":["1557-3958","1557-3966"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320424","host_organization_name":"IGI Global","host_organization_lineage":["https://openalex.org/P4310320424"],"host_organization_lineage_names":["IGI Global"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5102886753","display_name":"Poonam Bansal","orcid":"https://orcid.org/0000-0002-8214-2840"},"institutions":[{"id":"https://openalex.org/I105454292","display_name":"Guru Gobind Singh Indraprastha University","ror":"https://ror.org/034q1za58","country_code":"IN","type":"education","lineage":["https://openalex.org/I105454292"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Poonam Bansal","raw_affiliation_strings":["[Guru Gobind Singh Indraprastha University, India]"],"affiliations":[{"raw_affiliation_string":"[Guru Gobind Singh Indraprastha University, India]","institution_ids":["https://openalex.org/I105454292"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5022991626","display_name":"Amita Dev","orcid":"https://orcid.org/0000-0002-6926-9433"},"institutions":[{"id":"https://openalex.org/I190765188","display_name":"Ambedkar University Delhi","ror":"https://ror.org/0039wpa60","country_code":"IN","type":"education","lineage":["https://openalex.org/I190765188"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Amita Dev","raw_affiliation_strings":["Ambedkar Institute of Technology, India"],"affiliations":[{"raw_affiliation_string":"Ambedkar Institute of Technology, India","institution_ids":["https://openalex.org/I190765188"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5110879575","display_name":"Shail Bala Jain","orcid":null},"institutions":[{"id":"https://openalex.org/I105454292","display_name":"Guru Gobind Singh Indraprastha University","ror":"https://ror.org/034q1za58","country_code":"IN","type":"education","lineage":["https://openalex.org/I105454292"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Shail Jain","raw_affiliation_strings":["GGSIP University, India#TAB#"],"affiliations":[{"raw_affiliation_string":"GGSIP University, India#TAB#","institution_ids":["https://openalex.org/I105454292"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.460784,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":71,"max":75},"biblio":{"volume":"4","issue":"4","first_page":"37","last_page":"46"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10901","display_name":"Advanced Data Compression Techniques","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/mel-frequency-cepstrum","display_name":"Mel-frequency cepstrum","score":0.7726754},{"id":"https://openalex.org/keywords/autocorrelation-technique","display_name":"Autocorrelation technique","score":0.73763365},{"id":"https://openalex.org/keywords/autocorrelation-matrix","display_name":"Autocorrelation matrix","score":0.5737213},{"id":"https://openalex.org/keywords/cepstrum","display_name":"Cepstrum","score":0.5310348}],"concepts":[{"id":"https://openalex.org/C5297727","wikidata":"https://www.wikidata.org/wiki/Q786970","display_name":"Autocorrelation","level":2,"score":0.9170048},{"id":"https://openalex.org/C151989614","wikidata":"https://www.wikidata.org/wiki/Q440370","display_name":"Mel-frequency cepstrum","level":3,"score":0.7726754},{"id":"https://openalex.org/C183223151","wikidata":"https://www.wikidata.org/wiki/Q4826228","display_name":"Autocorrelation technique","level":3,"score":0.73763365},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.66164476},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.634344},{"id":"https://openalex.org/C4033963","wikidata":"https://www.wikidata.org/wiki/Q786970","display_name":"Autocorrelation matrix","level":3,"score":0.5737213},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.54435956},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.53608334},{"id":"https://openalex.org/C88485024","wikidata":"https://www.wikidata.org/wiki/Q1054571","display_name":"Cepstrum","level":2,"score":0.5310348},{"id":"https://openalex.org/C168110828","wikidata":"https://www.wikidata.org/wiki/Q1331626","display_name":"Spectral density","level":2,"score":0.5036079},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.44193077},{"id":"https://openalex.org/C159877910","wikidata":"https://www.wikidata.org/wiki/Q2202883","display_name":"Autoregressive model","level":2,"score":0.419854},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3554814},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.31615192},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.30597168},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.24734169},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.105165064},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.4018/ijcini.2010100103","pdf_url":null,"source":{"id":"https://openalex.org/S157664362","display_name":"International Journal of Cognitive Informatics and Natural Intelligence","issn_l":"1557-3958","issn":["1557-3958","1557-3966"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320424","host_organization_name":"IGI Global","host_organization_lineage":["https://openalex.org/P4310320424"],"host_organization_lineage_names":["IGI Global"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","score":0.84,"display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":26,"referenced_works":["https://openalex.org/W141886903","https://openalex.org/W1573570773","https://openalex.org/W1588533203","https://openalex.org/W1665196592","https://openalex.org/W193006","https://openalex.org/W1974387177","https://openalex.org/W1982139997","https://openalex.org/W2010023285","https://openalex.org/W2020438552","https://openalex.org/W2036099872","https://openalex.org/W2045036776","https://openalex.org/W206566910","https://openalex.org/W2111289021","https://openalex.org/W2114827915","https://openalex.org/W2126484846","https://openalex.org/W2126597753","https://openalex.org/W2127266241","https://openalex.org/W2131429563","https://openalex.org/W2147767892","https://openalex.org/W2153119843","https://openalex.org/W2165071747","https://openalex.org/W2166055581","https://openalex.org/W2169110040","https://openalex.org/W2175830830","https://openalex.org/W322227076","https://openalex.org/W67417849"],"related_works":["https://openalex.org/W2387604097","https://openalex.org/W2373675101","https://openalex.org/W2359140082","https://openalex.org/W2160511961","https://openalex.org/W2107017900","https://openalex.org/W2074132948","https://openalex.org/W2048784594","https://openalex.org/W2018086531","https://openalex.org/W1980297060","https://openalex.org/W106160982"],"abstract_inverted_index":{"In":[0],"this":[1,45],"paper,":[2],"a":[3,98],"feature":[4],"extraction":[5],"method":[6,46],"that":[7,141],"is":[8,14,72,90,157],"robust":[9],"to":[10,106,116],"additive":[11],"background":[12,22],"noise":[13,23],"proposed":[15],"for":[16,60,150,163],"automatic":[17],"speech":[18,30,84,132,152],"recognition.":[19],"Since":[20],"the":[21,25,29,34,38,48,56,67,79,83,94,102,108,118,131,136,147,160],"corrupts":[24],"autocorrelation":[26,40,51,58,70],"coefficients":[27,41,52,59,113],"of":[28,66,78,82,135],"signal":[31],"mostly":[32],"at":[33],"lower":[35,49],"orders,":[36],"while":[37],"higher-order":[39,57,69],"are":[42,114],"least":[43],"affected,":[44],"discards":[47],"order":[50],"and":[53,101,139,153],"uses":[54],"only":[55],"spectral":[61,88],"estimation.":[62],"The":[63,128],"magnitude":[64],"spectrum":[65,81],"windowed":[68],"sequence":[71],"used":[73],"here":[74],"as":[75,117,144,146],"an":[76],"estimate":[77,89],"power":[80,87],"signal.":[85],"This":[86],"processed":[91],"further":[92],"by":[93],"Mel":[95],"filter":[96],"bank;":[97],"log":[99],"operation":[100],"discrete":[103],"cosine":[104],"transform":[105],"get":[107],"cepstral":[109,112],"coefficients.":[110],"These":[111],"referred":[115],"Differentiated":[119],"Relative":[120],"Higher":[121],"Order":[122],"Autocorrelation":[123],"Coefficient":[124],"Sequence":[125],"Spectrum":[126],"(DRHOASS).":[127],"authors":[129],"evaluate":[130],"recognition":[133,155],"performance":[134,156],"DRHOASS":[137],"features":[138,149,162],"show":[140],"they":[142],"perform":[143],"well":[145],"MFCC":[148,161],"clean":[151],"their":[154],"better":[158],"than":[159],"noisy":[164],"speech.":[165]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2038945204","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2013,"cited_by_count":1}],"updated_date":"2024-12-11T21:25:12.579751","created_date":"2016-06-24"}