{"id":"https://openalex.org/W4401430128","doi":"https://doi.org/10.3991/ijoe.v20i11.49139","title":"Improving the Accuracy of Oncology Diagnosis: A Machine Learning-Based Approach to Cancer Prediction","display_name":"Improving the Accuracy of Oncology Diagnosis: A Machine Learning-Based Approach to Cancer Prediction","publication_year":2024,"publication_date":"2024-08-08","ids":{"openalex":"https://openalex.org/W4401430128","doi":"https://doi.org/10.3991/ijoe.v20i11.49139"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3991/ijoe.v20i11.49139","pdf_url":null,"source":{"id":"https://openalex.org/S4210211237","display_name":"International Journal of Online and Biomedical Engineering (iJOE)","issn_l":"2626-8493","issn":["2626-8493"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://doi.org/10.3991/ijoe.v20i11.49139","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5078759618","display_name":"Michael Cabanillas-Carbonell","orcid":"https://orcid.org/0000-0001-9675-0970"},"institutions":[{"id":"https://openalex.org/I42923333","display_name":"Private University of the North","ror":"https://ror.org/05t6q2334","country_code":"PE","type":"education","lineage":["https://openalex.org/I42923333"]}],"countries":["PE"],"is_corresponding":true,"raw_author_name":"Michael Cabanillas-Carbonell","raw_affiliation_strings":["Universidad Privada del Norte"],"affiliations":[{"raw_affiliation_string":"Universidad Privada del Norte","institution_ids":["https://openalex.org/I42923333"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5022571253","display_name":"Joselyn Zapata-Paulini","orcid":"https://orcid.org/0000-0002-4500-5249"},"institutions":[{"id":"https://openalex.org/I4210165210","display_name":"Universidad Continental","ror":"https://ror.org/05rcf8d17","country_code":"PE","type":"education","lineage":["https://openalex.org/I4210165210"]}],"countries":["PE"],"is_corresponding":true,"raw_author_name":"Joselyn Zapata-Paulini","raw_affiliation_strings":["Universidad Continental"],"affiliations":[{"raw_affiliation_string":"Universidad Continental","institution_ids":["https://openalex.org/I4210165210"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5078759618","https://openalex.org/A5022571253"],"corresponding_institution_ids":["https://openalex.org/I42923333","https://openalex.org/I4210165210"],"apc_list":{"value":290,"currency":"EUR","value_usd":312,"provenance":"doaj"},"apc_paid":{"value":290,"currency":"EUR","value_usd":312,"provenance":"doaj"},"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":85},"biblio":{"volume":"20","issue":"11","first_page":"102","last_page":"122"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11396","display_name":"Machine Learning in Healthcare and Medicine","score":0.901,"subfield":{"id":"https://openalex.org/subfields/3605","display_name":"Health Information Management"},"field":{"id":"https://openalex.org/fields/36","display_name":"Health Professions"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11396","display_name":"Machine Learning in Healthcare and Medicine","score":0.901,"subfield":{"id":"https://openalex.org/subfields/3605","display_name":"Health Information Management"},"field":{"id":"https://openalex.org/fields/36","display_name":"Health Professions"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/machine-learning","display_name":"Machine Learning","score":0.563493},{"id":"https://openalex.org/keywords/support-vector-machines","display_name":"Support Vector Machines","score":0.541619},{"id":"https://openalex.org/keywords/logistic-regression","display_name":"Logistic Regression","score":0.528772},{"id":"https://openalex.org/keywords/medical-diagnosis","display_name":"Medical Diagnosis","score":0.528493},{"id":"https://openalex.org/keywords/heart-disease-prediction","display_name":"Heart Disease Prediction","score":0.526686},{"id":"https://openalex.org/keywords/precision-oncology","display_name":"Precision oncology","score":0.45544198}],"concepts":[{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5211642},{"id":"https://openalex.org/C19527891","wikidata":"https://www.wikidata.org/wiki/Q1120908","display_name":"Medical physics","level":1,"score":0.4767424},{"id":"https://openalex.org/C121608353","wikidata":"https://www.wikidata.org/wiki/Q12078","display_name":"Cancer","level":2,"score":0.4630781},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.45848888},{"id":"https://openalex.org/C3020497934","wikidata":"https://www.wikidata.org/wiki/Q17075943","display_name":"Precision oncology","level":3,"score":0.45544198},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.43414733},{"id":"https://openalex.org/C143998085","wikidata":"https://www.wikidata.org/wiki/Q162555","display_name":"Oncology","level":1,"score":0.38948736},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.3888834},{"id":"https://openalex.org/C126322002","wikidata":"https://www.wikidata.org/wiki/Q11180","display_name":"Internal medicine","level":1,"score":0.32938373}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.3991/ijoe.v20i11.49139","pdf_url":null,"source":{"id":"https://openalex.org/S4210211237","display_name":"International Journal of Online and Biomedical Engineering (iJOE)","issn_l":"2626-8493","issn":["2626-8493"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3991/ijoe.v20i11.49139","pdf_url":null,"source":{"id":"https://openalex.org/S4210211237","display_name":"International Journal of Online and Biomedical Engineering (iJOE)","issn_l":"2626-8493","issn":["2626-8493"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":77,"referenced_works":["https://openalex.org/W1987552279","https://openalex.org/W1997866278","https://openalex.org/W2056132907","https://openalex.org/W2088794999","https://openalex.org/W2090347203","https://openalex.org/W2221837786","https://openalex.org/W2295598076","https://openalex.org/W2524721548","https://openalex.org/W2605654091","https://openalex.org/W2607355358","https://openalex.org/W2803414046","https://openalex.org/W2895926103","https://openalex.org/W2904973329","https://openalex.org/W2943606118","https://openalex.org/W2955283786","https://openalex.org/W2973032093","https://openalex.org/W2995098893","https://openalex.org/W2995579012","https://openalex.org/W3034390418","https://openalex.org/W3036473471","https://openalex.org/W3036681193","https://openalex.org/W3039545241","https://openalex.org/W3043761056","https://openalex.org/W3048804154","https://openalex.org/W3081125651","https://openalex.org/W3083171672","https://openalex.org/W3084074548","https://openalex.org/W3128646645","https://openalex.org/W3131251490","https://openalex.org/W3133391169","https://openalex.org/W3142620583","https://openalex.org/W3143433934","https://openalex.org/W3145086671","https://openalex.org/W3147142721","https://openalex.org/W3155933005","https://openalex.org/W3157526297","https://openalex.org/W3159710654","https://openalex.org/W3162571080","https://openalex.org/W3165720345","https://openalex.org/W3190173765","https://openalex.org/W3199284438","https://openalex.org/W3204406836","https://openalex.org/W3210882222","https://openalex.org/W3217039319","https://openalex.org/W3217696142","https://openalex.org/W4205666607","https://openalex.org/W4206841660","https://openalex.org/W4207032606","https://openalex.org/W4220971629","https://openalex.org/W4221005924","https://openalex.org/W4226172551","https://openalex.org/W4226185015","https://openalex.org/W4229067893","https://openalex.org/W4250988393","https://openalex.org/W4251961557","https://openalex.org/W4280513172","https://openalex.org/W4281635832","https://openalex.org/W4281650517","https://openalex.org/W4283313052","https://openalex.org/W4292334794","https://openalex.org/W4294250523","https://openalex.org/W4304098281","https://openalex.org/W4307093192","https://openalex.org/W4307335345","https://openalex.org/W4313475949","https://openalex.org/W4313524981","https://openalex.org/W4315815602","https://openalex.org/W4320005389","https://openalex.org/W4323341720","https://openalex.org/W4366983277","https://openalex.org/W4367722758","https://openalex.org/W4383221745","https://openalex.org/W4383334353","https://openalex.org/W4385455291","https://openalex.org/W4389614278","https://openalex.org/W4393000827","https://openalex.org/W4396660334"],"related_works":["https://openalex.org/W4304187729","https://openalex.org/W4225986219","https://openalex.org/W3207060480","https://openalex.org/W2961085424","https://openalex.org/W2751417344","https://openalex.org/W2618113496","https://openalex.org/W2531913951","https://openalex.org/W2460432307","https://openalex.org/W2186113122","https://openalex.org/W1523310174"],"abstract_inverted_index":{"Cancer":[0],"ranks":[1],"among":[2],"the":[3,39,44,99,102,139,164,166,169,174],"most":[4],"lethal":[5],"illnesses":[6],"worldwide,":[7],"and":[8,30,55,92,115,124,146,160,182],"predicting":[9],"its":[10],"onset":[11],"can":[12],"be":[13],"a":[14,110,116],"crucial":[15],"factor":[16],"in":[17],"enhancing":[18],"people\u2019s":[19],"quality":[20],"of":[21,112,118,138,156],"life":[22],"by":[23],"taking":[24],"preventive":[25],"measures":[26],"to":[27,37,97],"improve":[28],"treatment":[29],"survival.":[31],"This":[32],"study":[33,128,142],"conducted":[34],"comparative":[35],"research":[36],"determine":[38],"machine":[40,90],"learning":[41],"model":[42,171],"with":[43,101],"highest":[45],"accuracy":[46],"for":[47],"tumor":[48,125],"type":[49],"classification,":[50],"distinguishing":[51],"between":[52],"malignant":[53],"(cancer)":[54],"benign":[56],"tumors.":[57],"The":[58,105,127,148],"models":[59,106],"evaluated":[60,152],"include":[61],"decision":[62],"tree":[63],"(DT),":[64],"naive":[65],"bayes":[66],"(NB),":[67],"extra":[68],"trees":[69],"classifier":[70],"(ETM),":[71],"random":[72],"forest":[73],"(RF),":[74],"K-means":[75],"clustering":[76],"(K-means),":[77],"logistic":[78],"regression":[79],"(LR),":[80],"adaptive":[81],"boosting":[82,85,89,95],"(AdaBoost),":[83],"gradient":[84,88,94],"(GB),":[86],"light":[87],"(LightGBM),":[91],"extreme":[93],"(XGBoost)":[96],"identify":[98],"one":[100],"best":[103,175],"accuracy.":[104],"were":[107],"trained":[108],"using":[109],"dataset":[111],"569":[113],"records":[114],"total":[117],"32":[119],"variables,":[120],"containing":[121],"patient":[122],"information":[123],"characteristics.":[126],"was":[129,151],"structured":[130],"into":[131],"sections,":[132],"such":[133],"as":[134,172],"related":[135],"studies,":[136],"descriptions":[137],"models,":[140],"case":[141],"development,":[143],"results,":[144],"discussion,":[145],"conclusions.":[147],"models\u2019":[149],"performance":[150],"based":[153],"on":[154],"metrics":[155],"precision,":[157,179],"sensitivity,":[158,181],"accuracy,":[159,180],"F1":[161,183],"score.":[162,184],"Following":[163],"training,":[165],"results":[167],"positioned":[168],"XGBoost":[170],"having":[173],"performance,":[176],"achieving":[177],"98%":[178]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4401430128","counts_by_year":[],"updated_date":"2024-11-23T03:50:42.244420","created_date":"2024-08-09"}