{"id":"https://openalex.org/W4379054980","doi":"https://doi.org/10.3390/sym15061178","title":"A MOOC Course Data Analysis Based on an Improved Metapath2vec Algorithm","display_name":"A MOOC Course Data Analysis Based on an Improved Metapath2vec Algorithm","publication_year":2023,"publication_date":"2023-05-31","ids":{"openalex":"https://openalex.org/W4379054980","doi":"https://doi.org/10.3390/sym15061178"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/sym15061178","pdf_url":"https://www.mdpi.com/2073-8994/15/6/1178/pdf?version=1685588189","source":{"id":"https://openalex.org/S190787756","display_name":"Symmetry","issn_l":"2073-8994","issn":["2073-8994"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.mdpi.com/2073-8994/15/6/1178/pdf?version=1685588189","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5088254156","display_name":"Congcong Xu","orcid":null},"institutions":[{"id":"https://openalex.org/I50760025","display_name":"Hangzhou Dianzi University","ror":"https://ror.org/0576gt767","country_code":"CN","type":"funder","lineage":["https://openalex.org/I50760025"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Congcong Xu","raw_affiliation_strings":["Department of Automation, Hangzhou Dianzi University, Hangzhou 310018, China"],"affiliations":[{"raw_affiliation_string":"Department of Automation, Hangzhou Dianzi University, Hangzhou 310018, China","institution_ids":["https://openalex.org/I50760025"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5011768840","display_name":"Jing Feng","orcid":"https://orcid.org/0000-0001-7224-9372"},"institutions":[{"id":"https://openalex.org/I50760025","display_name":"Hangzhou Dianzi University","ror":"https://ror.org/0576gt767","country_code":"CN","type":"funder","lineage":["https://openalex.org/I50760025"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Jing Feng","raw_affiliation_strings":["Department of Automation, Hangzhou Dianzi University, Hangzhou 310018, China"],"affiliations":[{"raw_affiliation_string":"Department of Automation, Hangzhou Dianzi University, Hangzhou 310018, China","institution_ids":["https://openalex.org/I50760025"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103546146","display_name":"Xiaomin Hu","orcid":"https://orcid.org/0009-0009-5194-1584"},"institutions":[{"id":"https://openalex.org/I50760025","display_name":"Hangzhou Dianzi University","ror":"https://ror.org/0576gt767","country_code":"CN","type":"funder","lineage":["https://openalex.org/I50760025"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaomin Hu","raw_affiliation_strings":["Department of Science, Hangzhou Dianzi University, Hangzhou 310018, China"],"affiliations":[{"raw_affiliation_string":"Department of Science, Hangzhou Dianzi University, Hangzhou 310018, China","institution_ids":["https://openalex.org/I50760025"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074117281","display_name":"Xiaobin Xu","orcid":null},"institutions":[{"id":"https://openalex.org/I50760025","display_name":"Hangzhou Dianzi University","ror":"https://ror.org/0576gt767","country_code":"CN","type":"funder","lineage":["https://openalex.org/I50760025"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaobin Xu","raw_affiliation_strings":["Department of Automation, Hangzhou Dianzi University, Hangzhou 310018, China"],"affiliations":[{"raw_affiliation_string":"Department of Automation, Hangzhou Dianzi University, Hangzhou 310018, China","institution_ids":["https://openalex.org/I50760025"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100421812","display_name":"Yi Li","orcid":"https://orcid.org/0000-0003-4562-8208"},"institutions":[{"id":"https://openalex.org/I50760025","display_name":"Hangzhou Dianzi University","ror":"https://ror.org/0576gt767","country_code":"CN","type":"funder","lineage":["https://openalex.org/I50760025"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yi Li","raw_affiliation_strings":["Department of Automation, Hangzhou Dianzi University, Hangzhou 310018, China"],"affiliations":[{"raw_affiliation_string":"Department of Automation, Hangzhou Dianzi University, Hangzhou 310018, China","institution_ids":["https://openalex.org/I50760025"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5018372886","display_name":"Pingzhi Hou","orcid":"https://orcid.org/0000-0003-3836-5032"},"institutions":[{"id":"https://openalex.org/I50760025","display_name":"Hangzhou Dianzi University","ror":"https://ror.org/0576gt767","country_code":"CN","type":"funder","lineage":["https://openalex.org/I50760025"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Pingzhi Hou","raw_affiliation_strings":["Department of Automation, Hangzhou Dianzi University, Hangzhou 310018, China"],"affiliations":[{"raw_affiliation_string":"Department of Automation, Hangzhou Dianzi University, Hangzhou 310018, China","institution_ids":["https://openalex.org/I50760025"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5011768840"],"corresponding_institution_ids":["https://openalex.org/I50760025"],"apc_list":{"value":2000,"currency":"CHF","value_usd":2165},"apc_paid":{"value":2000,"currency":"CHF","value_usd":2165},"fwci":0.569,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":2,"citation_normalized_percentile":{"value":0.497511,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":82},"biblio":{"volume":"15","issue":"6","first_page":"1178","last_page":"1178"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10064","display_name":"Complex Network Analysis Techniques","score":0.998,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13731","display_name":"Advanced Computing and Algorithms","score":0.9866,"subfield":{"id":"https://openalex.org/subfields/3322","display_name":"Urban Studies"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8187702},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.6023056},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.586447},{"id":"https://openalex.org/C62611344","wikidata":"https://www.wikidata.org/wiki/Q1062658","display_name":"Node (physics)","level":2,"score":0.48248675},{"id":"https://openalex.org/C158207573","wikidata":"https://www.wikidata.org/wiki/Q5747224","display_name":"Heterogeneous network","level":4,"score":0.46926802},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.41199893},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.39240733},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.38430497},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.37280643},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.36747068},{"id":"https://openalex.org/C108037233","wikidata":"https://www.wikidata.org/wiki/Q11375","display_name":"Wireless network","level":3,"score":0.102290064},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C66938386","wikidata":"https://www.wikidata.org/wiki/Q633538","display_name":"Structural engineering","level":1,"score":0.0},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C555944384","wikidata":"https://www.wikidata.org/wiki/Q249","display_name":"Wireless","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/sym15061178","pdf_url":"https://www.mdpi.com/2073-8994/15/6/1178/pdf?version=1685588189","source":{"id":"https://openalex.org/S190787756","display_name":"Symmetry","issn_l":"2073-8994","issn":["2073-8994"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/sym15061178","pdf_url":"https://www.mdpi.com/2073-8994/15/6/1178/pdf?version=1685588189","source":{"id":"https://openalex.org/S190787756","display_name":"Symmetry","issn_l":"2073-8994","issn":["2073-8994"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Quality education","score":0.42,"id":"https://metadata.un.org/sdg/4"}],"grants":[{"funder":"https://openalex.org/F4320338465","funder_display_name":"Zhejiang Province Public Welfare Technology Application Research Project","award_id":"LGF21F020013"}],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W2086479834","https://openalex.org/W2202042777","https://openalex.org/W2250539671","https://openalex.org/W2612872092","https://openalex.org/W2743104969","https://openalex.org/W2962975498","https://openalex.org/W2963919031","https://openalex.org/W3015492777","https://openalex.org/W3020929333","https://openalex.org/W3035721489","https://openalex.org/W3042213921","https://openalex.org/W3097386298","https://openalex.org/W3108202858","https://openalex.org/W3147142788","https://openalex.org/W3167367835","https://openalex.org/W3199612398","https://openalex.org/W3210619801","https://openalex.org/W4239025696","https://openalex.org/W4285234746"],"related_works":["https://openalex.org/W4235240664","https://openalex.org/W2965083567","https://openalex.org/W2889616422","https://openalex.org/W2389214306","https://openalex.org/W2095886385","https://openalex.org/W2089704382","https://openalex.org/W2022479666","https://openalex.org/W1927327903","https://openalex.org/W1838576100","https://openalex.org/W1544665982"],"abstract_inverted_index":{"Many":[0],"real-world":[1],"scenarios":[2],"can":[3,185],"be":[4],"naturally":[5],"modeled":[6],"as":[7],"heterogeneous":[8,64,124,138,158],"graphs,":[9],"which":[10,47,147],"contain":[11],"both":[12],"symmetry":[13],"and":[14,56,66,83,90,101,126,141,151,183,190],"asymmetry":[15],"information.":[16],"How":[17],"to":[18,53,69,79,134],"learn":[19,142],"useful":[20],"knowledge":[21],"from":[22],"the":[23,29,71,81,86,97,102,116,127,130,137,143,149,154,170,177,196],"graph":[24],"has":[25],"become":[26],"one":[27],"of":[28,32,62,73,85,108,123,145,153],"hot":[30],"spots":[31],"research":[33],"in":[34,157,195],"artificial":[35],"intelligence.":[36],"Based":[37],"on":[38,96,111],"Metapath2vec":[39,43],"algorithm,":[40],"an":[41],"improved":[42],"algorithm":[44,118,128,172,181],"is":[45,163,173],"presented,":[46],"combines":[48],"Metapath":[49],"random":[50],"walk,":[51],"used":[52],"capture":[54],"semantics":[55],"structure":[57,140],"information":[58],"between":[59],"different":[60],"nodes":[61],"a":[63],"network,":[65],"GloVe":[67],"model":[68],"consider":[70],"advantage":[72],"global":[74],"text":[75],"representation.":[76],"In":[77],"order":[78],"verify":[80],"feasibility":[82],"effectiveness":[84,150],"model,":[87],"node":[88,131],"clustering":[89,188],"link":[91],"prediction":[92,193],"experiments":[93,168],"were":[94],"conducted":[95],"self-generated":[98],"ideal":[99],"dataset":[100],"MOOC":[103],"course":[104],"data.":[105],"The":[106],"analysis":[107],"experimental":[109],"data":[110],"these":[112],"tasks":[113],"shows":[114],"that":[115,169],"Metapath\u2013GloVe":[117,171],"learns":[119],"consistently":[120],"better":[121,135,187],"embedding":[122,132],"nodes,":[125,146],"improves":[129],"performance":[133],"characterize":[136],"network":[139,159],"characteristics":[144],"proves":[148],"scalability":[152],"proposed":[155],"method":[156],"mining":[160],"tasks.":[161],"It":[162],"also":[164],"shown":[165],"through":[166],"extensive":[167],"more":[174,191],"efficient":[175],"than":[176],"non-negative":[178],"matrix":[179],"decomposition":[180],"(NMF),":[182],"it":[184],"obtain":[186],"results":[189,194],"accurate":[192],"video":[197],"recommendation":[198],"task.":[199]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4379054980","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2025-04-06T22:23:57.002668","created_date":"2023-06-02"}