{"id":"https://openalex.org/W4282828538","doi":"https://doi.org/10.3390/sym14061186","title":"Lagrangian Regularized Twin Extreme Learning Machine for Supervised and Semi-Supervised Classification","display_name":"Lagrangian Regularized Twin Extreme Learning Machine for Supervised and Semi-Supervised Classification","publication_year":2022,"publication_date":"2022-06-09","ids":{"openalex":"https://openalex.org/W4282828538","doi":"https://doi.org/10.3390/sym14061186"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/sym14061186","pdf_url":"https://www.mdpi.com/2073-8994/14/6/1186/pdf?version=1654742545","source":{"id":"https://openalex.org/S190787756","display_name":"Symmetry","issn_l":"2073-8994","issn":["2073-8994"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.mdpi.com/2073-8994/14/6/1186/pdf?version=1654742545","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5071376438","display_name":"Jun Ma","orcid":"https://orcid.org/0000-0002-5263-1870"},"institutions":[{"id":"https://openalex.org/I3019309368","display_name":"North Minzu University","ror":"https://ror.org/05xjevr11","country_code":"CN","type":"education","lineage":["https://openalex.org/I3019309368"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jun Ma","raw_affiliation_strings":["School of Mathematics and Information Sciences, North Minzu University, Yinchuan 750021, China"],"affiliations":[{"raw_affiliation_string":"School of Mathematics and Information Sciences, North Minzu University, Yinchuan 750021, China","institution_ids":["https://openalex.org/I3019309368"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5076538595","display_name":"Guolin Yu","orcid":"https://orcid.org/0000-0003-4729-7748"},"institutions":[{"id":"https://openalex.org/I3019309368","display_name":"North Minzu University","ror":"https://ror.org/05xjevr11","country_code":"CN","type":"education","lineage":["https://openalex.org/I3019309368"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Guolin Yu","raw_affiliation_strings":["School of Mathematics and Information Sciences, North Minzu University, Yinchuan 750021, China"],"affiliations":[{"raw_affiliation_string":"School of Mathematics and Information Sciences, North Minzu University, Yinchuan 750021, China","institution_ids":["https://openalex.org/I3019309368"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5076538595"],"corresponding_institution_ids":["https://openalex.org/I3019309368"],"apc_list":{"value":2000,"currency":"CHF","value_usd":2165,"provenance":"doaj"},"apc_paid":{"value":2000,"currency":"CHF","value_usd":2165,"provenance":"doaj"},"fwci":0.616,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.560836,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":80,"max":82},"biblio":{"volume":"14","issue":"6","first_page":"1186","last_page":"1186"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10062","display_name":"MicroRNA in disease regulation","score":0.9817,"subfield":{"id":"https://openalex.org/subfields/1306","display_name":"Cancer Research"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10773","display_name":"Extracellular vesicles in disease","score":0.9726,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/extreme-learning-machine","display_name":"Extreme Learning Machine","score":0.71400857},{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.59384596},{"id":"https://openalex.org/keywords/structural-risk-minimization","display_name":"Structural risk minimization","score":0.5450871},{"id":"https://openalex.org/keywords/augmented-lagrangian-method","display_name":"Augmented Lagrangian method","score":0.46476185},{"id":"https://openalex.org/keywords/online-machine-learning","display_name":"Online machine learning","score":0.4433966},{"id":"https://openalex.org/keywords/supervised-learning","display_name":"Supervised Learning","score":0.44278026}],"concepts":[{"id":"https://openalex.org/C2780150128","wikidata":"https://www.wikidata.org/wiki/Q21948731","display_name":"Extreme learning machine","level":3,"score":0.71400857},{"id":"https://openalex.org/C58973888","wikidata":"https://www.wikidata.org/wiki/Q1041418","display_name":"Semi-supervised learning","level":2,"score":0.6449221},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.59384596},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.56452143},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5508891},{"id":"https://openalex.org/C154507838","wikidata":"https://www.wikidata.org/wiki/Q7625053","display_name":"Structural risk minimization","level":3,"score":0.5450871},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.50021005},{"id":"https://openalex.org/C150452318","wikidata":"https://www.wikidata.org/wiki/Q4820432","display_name":"Augmented Lagrangian method","level":2,"score":0.46476185},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.46415314},{"id":"https://openalex.org/C191795146","wikidata":"https://www.wikidata.org/wiki/Q3878446","display_name":"Norm (philosophy)","level":2,"score":0.4581193},{"id":"https://openalex.org/C115903097","wikidata":"https://www.wikidata.org/wiki/Q7094097","display_name":"Online machine learning","level":3,"score":0.4433966},{"id":"https://openalex.org/C136389625","wikidata":"https://www.wikidata.org/wiki/Q334384","display_name":"Supervised learning","level":3,"score":0.44278026},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.41428018},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.370271},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.35510743},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/sym14061186","pdf_url":"https://www.mdpi.com/2073-8994/14/6/1186/pdf?version=1654742545","source":{"id":"https://openalex.org/S190787756","display_name":"Symmetry","issn_l":"2073-8994","issn":["2073-8994"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/bbae4d5221a54efdb0510040345cba73","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/sym14061186","pdf_url":"https://www.mdpi.com/2073-8994/14/6/1186/pdf?version=1654742545","source":{"id":"https://openalex.org/S190787756","display_name":"Symmetry","issn_l":"2073-8994","issn":["2073-8994"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"11861002"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61907012"}],"datasets":[],"versions":[],"referenced_works_count":42,"referenced_works":["https://openalex.org/W1560724230","https://openalex.org/W1565746575","https://openalex.org/W1664825283","https://openalex.org/W1966209552","https://openalex.org/W1966665485","https://openalex.org/W1980223872","https://openalex.org/W1984380945","https://openalex.org/W1987769400","https://openalex.org/W1998769964","https://openalex.org/W2000055701","https://openalex.org/W2013240772","https://openalex.org/W2013634902","https://openalex.org/W2017192920","https://openalex.org/W2026131661","https://openalex.org/W2034223886","https://openalex.org/W2042184006","https://openalex.org/W2057918986","https://openalex.org/W2073082683","https://openalex.org/W2090089568","https://openalex.org/W2095557540","https://openalex.org/W2111072639","https://openalex.org/W2121971770","https://openalex.org/W2122565017","https://openalex.org/W2140509289","https://openalex.org/W2157595416","https://openalex.org/W2158333529","https://openalex.org/W2159937720","https://openalex.org/W2162112159","https://openalex.org/W2170860445","https://openalex.org/W2284701177","https://openalex.org/W2368520314","https://openalex.org/W2494415546","https://openalex.org/W2607747938","https://openalex.org/W2773903545","https://openalex.org/W2844360937","https://openalex.org/W2886485743","https://openalex.org/W2888720620","https://openalex.org/W2997701990","https://openalex.org/W3134512549","https://openalex.org/W4212852655","https://openalex.org/W4239510810","https://openalex.org/W4241368925"],"related_works":["https://openalex.org/W4313204135","https://openalex.org/W4234077564","https://openalex.org/W31566076","https://openalex.org/W2969890106","https://openalex.org/W2384183769","https://openalex.org/W2375846648","https://openalex.org/W2348987257","https://openalex.org/W2154852616","https://openalex.org/W2109235760","https://openalex.org/W1964657680"],"abstract_inverted_index":{"Twin":[0],"extreme":[1,17,66,183],"learning":[2,18,67,156,184],"machine":[3,19,35,68,185],"(TELM)":[4],"is":[5,78,85,127],"a":[6,58,121,138,178],"phenomenon":[7],"of":[8,14,34,73,97,100,103,107,140,165,203],"symmetry":[9],"that":[10,79,193],"improves":[11],"the":[12,15,32,37,80,89,95,98,101,108,115,163,194,209],"performance":[13,164],"traditional":[16],"classification":[20],"algorithm":[21,126],"(ELM).":[22],"Although":[23],"TELM":[24,47,60,77],"has":[25,48],"been":[26],"widely":[27],"researched":[28],"and":[29,123,197,205],"applied":[30],"in":[31,111,143,201],"field":[33],"learning,":[36],"need":[38],"to":[39,113,135,145,154,161,176,208],"solve":[40,137],"two":[41,148],"quadratic":[42],"programming":[43],"problems":[44],"(QPPs)":[45],"for":[46,129],"greatly":[49],"limited":[50],"its":[51],"development.":[52],"In":[53],"this":[54],"paper,":[55],"we":[56,93,151],"propose":[57],"novel":[59],"framework":[61],"called":[62],"Lagrangian":[63,179],"regularized":[64,181],"twin":[65,182],"(LRTELM).":[69],"One":[70],"significant":[71],"advantage":[72],"our":[74],"LRTELM":[75,153,166,196],"over":[76],"structural":[81],"risk":[82],"minimization":[83],"principle":[84],"implemented":[86],"by":[87,157],"introducing":[88,158],"regularization":[90,160],"term.":[91],"Meanwhile,":[92],"consider":[94],"square":[96],"l2-norm":[99],"vector":[102],"slack":[104],"variables":[105],"instead":[106],"usual":[109],"l1-norm":[110],"order":[112,144],"make":[114],"objective":[116],"functions":[117],"strongly":[118],"convex.":[119],"Furthermore,":[120],"simple":[122],"fast":[124],"iterative":[125],"designed":[128],"solving":[130,147],"LRTELM,":[131],"which":[132],"only":[133],"needs":[134],"iteratively":[136],"pair":[139],"linear":[141],"equations":[142],"avoid":[146],"QPPs.":[149],"Last,":[150],"extend":[152],"semi-supervised":[155,180],"manifold":[159],"improve":[162],"when":[167],"insufficient":[168],"labeled":[169],"samples":[170],"are":[171,199],"available,":[172],"as":[173,175],"well":[174],"obtain":[177],"(Lap-LRTELM).":[186],"Experimental":[187],"results":[188],"on":[189],"most":[190],"datasets":[191],"show":[192],"proposed":[195],"Lap-LRTELM":[198],"competitive":[200],"terms":[202],"accuracy":[204],"efficiency":[206],"compared":[207],"state-of-the-art":[210],"algorithms.":[211]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4282828538","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":2}],"updated_date":"2025-01-15T22:34:16.159899","created_date":"2022-06-15"}