{"id":"https://openalex.org/W4401162470","doi":"https://doi.org/10.3390/s24154975","title":"A Self-Supervised Few-Shot Semantic Segmentation Method Based on Multi-Task Learning and Dense Attention Computation","display_name":"A Self-Supervised Few-Shot Semantic Segmentation Method Based on Multi-Task Learning and Dense Attention Computation","publication_year":2024,"publication_date":"2024-07-31","ids":{"openalex":"https://openalex.org/W4401162470","doi":"https://doi.org/10.3390/s24154975","pmid":"https://pubmed.ncbi.nlm.nih.gov/39124022"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s24154975","pdf_url":"https://www.mdpi.com/1424-8220/24/15/4975/pdf?version=1722505439","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.mdpi.com/1424-8220/24/15/4975/pdf?version=1722505439","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100755171","display_name":"Kai Yi","orcid":null},"institutions":[{"id":"https://openalex.org/I4210139481","display_name":"Science and Technology Department of Sichuan Province","ror":"https://ror.org/04323m874","country_code":"CN","type":"government","lineage":["https://openalex.org/I4210139481"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Kai Yi\u00a0","raw_affiliation_strings":["Intelligent Policing Key Laboratory of Sichuan Province, Luzhou 646099, China"],"affiliations":[{"raw_affiliation_string":"Intelligent Policing Key Laboratory of Sichuan Province, Luzhou 646099, China","institution_ids":["https://openalex.org/I4210139481"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5042240342","display_name":"Weihang Wang","orcid":"https://orcid.org/0000-0002-2199-1048"},"institutions":[{"id":"https://openalex.org/I24185976","display_name":"Sichuan University","ror":"https://ror.org/011ashp19","country_code":"CN","type":"education","lineage":["https://openalex.org/I24185976"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Weihang Wang\u00a0","raw_affiliation_strings":["College of Computer Science, Sichuan University, Chengdu 610042, China"],"affiliations":[{"raw_affiliation_string":"College of Computer Science, Sichuan University, Chengdu 610042, China","institution_ids":["https://openalex.org/I24185976"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100388126","display_name":"Yi Zhang","orcid":"https://orcid.org/0000-0002-2028-048X"},"institutions":[{"id":"https://openalex.org/I24185976","display_name":"Sichuan University","ror":"https://ror.org/011ashp19","country_code":"CN","type":"education","lineage":["https://openalex.org/I24185976"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Yi Zhang\u00a0","raw_affiliation_strings":["College of Computer Science, Sichuan University, Chengdu 610042, China"],"affiliations":[{"raw_affiliation_string":"College of Computer Science, Sichuan University, Chengdu 610042, China","institution_ids":["https://openalex.org/I24185976"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5100388126"],"corresponding_institution_ids":["https://openalex.org/I24185976"],"apc_list":{"value":2400,"currency":"CHF","value_usd":2598,"provenance":"doaj"},"apc_paid":{"value":2400,"currency":"CHF","value_usd":2598,"provenance":"doaj"},"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":"24","issue":"15","first_page":"4975","last_page":"4975"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9939,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/supervised-learning","display_name":"Supervised Learning","score":0.5040006},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.44551754}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7657352},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.74436915},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.7351983},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.56587917},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.5183424},{"id":"https://openalex.org/C136389625","wikidata":"https://www.wikidata.org/wiki/Q334384","display_name":"Supervised learning","level":3,"score":0.5040006},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.45818228},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.44551754},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.43269464},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.42673472},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.41966724},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.11668739},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s24154975","pdf_url":"https://www.mdpi.com/1424-8220/24/15/4975/pdf?version=1722505439","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/39124022","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s24154975","pdf_url":"https://www.mdpi.com/1424-8220/24/15/4975/pdf?version=1722505439","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/8","display_name":"Decent work and economic growth","score":0.67}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":42,"referenced_works":["https://openalex.org/W1861492603","https://openalex.org/W2031489346","https://openalex.org/W2893918048","https://openalex.org/W2963078159","https://openalex.org/W2963599420","https://openalex.org/W2997884746","https://openalex.org/W3034925352","https://openalex.org/W3047258141","https://openalex.org/W3093412994","https://openalex.org/W3102977943","https://openalex.org/W3107590933","https://openalex.org/W3108187451","https://openalex.org/W3122412340","https://openalex.org/W3129110783","https://openalex.org/W3131068231","https://openalex.org/W3138516171","https://openalex.org/W3166152027","https://openalex.org/W3167453437","https://openalex.org/W3173759468","https://openalex.org/W3175308890","https://openalex.org/W3203637842","https://openalex.org/W3204077273","https://openalex.org/W3205247447","https://openalex.org/W3209917050","https://openalex.org/W3214418393","https://openalex.org/W4214573368","https://openalex.org/W4214660208","https://openalex.org/W4214951593","https://openalex.org/W4221153269","https://openalex.org/W4226452324","https://openalex.org/W4281762893","https://openalex.org/W4306309273","https://openalex.org/W4312592495","https://openalex.org/W4312901617","https://openalex.org/W4313023122","https://openalex.org/W4386075956","https://openalex.org/W4387430145","https://openalex.org/W4391621248","https://openalex.org/W4391693877","https://openalex.org/W4394625654","https://openalex.org/W4400120994","https://openalex.org/W4400534346"],"related_works":["https://openalex.org/W4390494008","https://openalex.org/W4285411112","https://openalex.org/W2922442631","https://openalex.org/W2171299904","https://openalex.org/W2168523118","https://openalex.org/W2085033728","https://openalex.org/W2073639911","https://openalex.org/W2053596378","https://openalex.org/W1647606319","https://openalex.org/W1522196789"],"abstract_inverted_index":{"Nowadays,":[0],"autonomous":[1],"driving":[2],"technology":[3],"has":[4],"become":[5],"widely":[6],"prevalent.":[7],"The":[8,96,179,192],"intelligent":[9],"vehicles":[10],"have":[11],"been":[12],"equipped":[13],"with":[14,29,131],"various":[15],"sensors":[16],"(e.g.,":[17],"vision":[18,27],"sensors,":[19],"LiDAR,":[20],"depth":[21],"cameras":[22],"etc.).":[23],"Among":[24],"them,":[25],"the":[26,43,64,112,124,128,132,143,208,220],"systems":[28],"tailored":[30],"semantic":[31,46,81],"segmentation":[32,47,82,206],"and":[33,88,127,188,200,210],"perception":[34],"algorithms":[35],"play":[36],"critical":[37],"roles":[38],"in":[39],"scene":[40],"understanding.":[41],"However,":[42],"traditional":[44],"supervised":[45],"needs":[48],"a":[49,78],"large":[50],"number":[51],"of":[52,99,108,170],"pixel-level":[53,177],"manual":[54],"annotations":[55],"to":[56,67,141,154,167,175],"complete":[57],"model":[58],"training.":[59],"Although":[60],"few-shot":[61,80,116,205,222],"methods":[62],"reduce":[63],"annotation":[65],"work":[66],"some":[68],"extent,":[69],"they":[70],"are":[71,121,164,183],"still":[72],"labor":[73],"intensive.":[74],"In":[75,214],"this":[76],"paper,":[77],"self-supervised":[79,204],"method":[83],"based":[84],"on":[85,207,219],"Multi-task":[86],"Learning":[87],"Dense":[89],"Attention":[90],"Computation":[91],"(dubbed":[92],"MLDAC)":[93],"is":[94,102,149],"proposed.":[95],"salient":[97],"part":[98,126],"an":[100],"image":[101],"split":[103],"into":[104],"two":[105],"parts;":[106],"one":[107],"them":[109],"serves":[110],"as":[111,136,140,151],"support":[113],"mask":[114],"for":[115],"segmentation,":[117],"while":[118],"cross-entropy":[119],"losses":[120],"calculated":[122],"between":[123],"other":[125],"entire":[129],"region":[130],"predicted":[133],"results":[134,182,194],"separately":[135],"multi-task":[137],"learning":[138],"so":[139],"improve":[142],"model\u2019s":[144],"generalization":[145],"ability.":[146],"Swin":[147],"Transformer":[148],"used":[150],"our":[152],"backbone":[153],"extract":[155],"feature":[156,162,189],"maps":[157,163],"at":[158],"different":[159],"scales.":[160],"These":[161],"then":[165],"input":[166],"multiple":[168],"levels":[169],"dense":[171],"attention":[172],"computation":[173],"blocks":[174],"enhance":[176],"correspondence.":[178],"final":[180],"prediction":[181],"obtained":[184],"through":[185],"inter-scale":[186],"mixing":[187],"skip":[190],"connection.":[191],"experimental":[193],"indicate":[195],"that":[196],"MLDAC":[197],"obtains":[198],"55.1%":[199],"26.8%":[201],"one-shot":[202],"mIoU":[203],"PASCAL-5i":[209],"COCO-20i":[211],"datasets,":[212],"respectively.":[213],"addition,":[215],"it":[216],"achieves":[217],"78.1%":[218],"FSS-1000":[221],"dataset,":[223],"proving":[224],"its":[225],"efficacy.":[226]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4401162470","counts_by_year":[],"updated_date":"2024-12-24T02:08:48.561391","created_date":"2024-08-01"}