{"id":"https://openalex.org/W4394577291","doi":"https://doi.org/10.3390/s24072336","title":"Direction-of-Arrival Estimation via Sparse Bayesian Learning Exploiting Hierarchical Priors with Low Complexity","display_name":"Direction-of-Arrival Estimation via Sparse Bayesian Learning Exploiting Hierarchical Priors with Low Complexity","publication_year":2024,"publication_date":"2024-04-06","ids":{"openalex":"https://openalex.org/W4394577291","doi":"https://doi.org/10.3390/s24072336","pmid":"https://pubmed.ncbi.nlm.nih.gov/38610548"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s24072336","pdf_url":"https://www.mdpi.com/1424-8220/24/7/2336/pdf?version=1712553636","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.mdpi.com/1424-8220/24/7/2336/pdf?version=1712553636","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5010853051","display_name":"Ninghui Li","orcid":"https://orcid.org/0000-0002-2068-4425"},"institutions":[{"id":"https://openalex.org/I4210104252","display_name":"Air Force Engineering University","ror":"https://ror.org/00seraz22","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210104252"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ninghui Li","raw_affiliation_strings":["Graduate School, Air Force Engineering University, Xi'an 710051, China;"],"affiliations":[{"raw_affiliation_string":"Graduate School, Air Force Engineering University, Xi'an 710051, China;","institution_ids":["https://openalex.org/I4210104252"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5115444825","display_name":"Xiaokuan Zhang","orcid":"https://orcid.org/0000-0002-3114-6251"},"institutions":[{"id":"https://openalex.org/I4210104252","display_name":"Air Force Engineering University","ror":"https://ror.org/00seraz22","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210104252"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaokuan Zhang","raw_affiliation_strings":["Air Defence and Antimissile School, Air Force Engineering University, Xi'an 710051, China;"],"affiliations":[{"raw_affiliation_string":"Air Defence and Antimissile School, Air Force Engineering University, Xi'an 710051, China;","institution_ids":["https://openalex.org/I4210104252"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5112128870","display_name":"Fan Lv","orcid":null},"institutions":[{"id":"https://openalex.org/I4210104252","display_name":"Air Force Engineering University","ror":"https://ror.org/00seraz22","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210104252"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fan Lv","raw_affiliation_strings":["Graduate School, Air Force Engineering University, Xi'an 710051, China;"],"affiliations":[{"raw_affiliation_string":"Graduate School, Air Force Engineering University, Xi'an 710051, China;","institution_ids":["https://openalex.org/I4210104252"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101719343","display_name":"Binfeng Zong","orcid":"https://orcid.org/0000-0002-4041-5388"},"institutions":[{"id":"https://openalex.org/I4210104252","display_name":"Air Force Engineering University","ror":"https://ror.org/00seraz22","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210104252"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Binfeng Zong","raw_affiliation_strings":["Air Defence and Antimissile School, Air Force Engineering University, Xi'an 710051, China;"],"affiliations":[{"raw_affiliation_string":"Air Defence and Antimissile School, Air Force Engineering University, Xi'an 710051, China;","institution_ids":["https://openalex.org/I4210104252"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5101719343"],"corresponding_institution_ids":["https://openalex.org/I4210104252"],"apc_list":{"value":2400,"currency":"CHF","value_usd":2598},"apc_paid":{"value":2400,"currency":"CHF","value_usd":2598},"fwci":1.74,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":1,"citation_normalized_percentile":{"value":0.806001,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":79,"max":89},"biblio":{"volume":"24","issue":"7","first_page":"2336","last_page":"2336"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10931","display_name":"Direction-of-Arrival Estimation Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10931","display_name":"Direction-of-Arrival Estimation Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11233","display_name":"Advanced Adaptive Filtering Techniques","score":0.998,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C177769412","wikidata":"https://www.wikidata.org/wiki/Q278090","display_name":"Prior probability","level":3,"score":0.9299755},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5615748},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.51883113},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4707965},{"id":"https://openalex.org/C160234255","wikidata":"https://www.wikidata.org/wiki/Q812535","display_name":"Bayesian inference","level":3,"score":0.42749965},{"id":"https://openalex.org/C56372850","wikidata":"https://www.wikidata.org/wiki/Q1050404","display_name":"Sparse matrix","level":3,"score":0.42202234},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3817684},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.38048467},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s24072336","pdf_url":"https://www.mdpi.com/1424-8220/24/7/2336/pdf?version=1712553636","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11014204","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/38610548","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s24072336","pdf_url":"https://www.mdpi.com/1424-8220/24/7/2336/pdf?version=1712553636","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":56,"referenced_works":["https://openalex.org/W129868937","https://openalex.org/W1997222146","https://openalex.org/W1999867771","https://openalex.org/W2000721204","https://openalex.org/W2009291374","https://openalex.org/W2016506370","https://openalex.org/W2028823365","https://openalex.org/W2055838441","https://openalex.org/W2065513175","https://openalex.org/W2075815282","https://openalex.org/W2103519107","https://openalex.org/W2104266187","https://openalex.org/W2129188305","https://openalex.org/W2130342534","https://openalex.org/W2136634080","https://openalex.org/W2148154358","https://openalex.org/W2152279006","https://openalex.org/W2156060175","https://openalex.org/W2162654459","https://openalex.org/W2166670884","https://openalex.org/W2210162573","https://openalex.org/W2292125938","https://openalex.org/W2323168390","https://openalex.org/W2396406914","https://openalex.org/W2554305184","https://openalex.org/W2589887738","https://openalex.org/W2591117389","https://openalex.org/W2591434033","https://openalex.org/W2768966190","https://openalex.org/W2796906318","https://openalex.org/W2797475427","https://openalex.org/W2921062571","https://openalex.org/W2945663217","https://openalex.org/W2946267042","https://openalex.org/W2962979026","https://openalex.org/W3000768990","https://openalex.org/W3001003127","https://openalex.org/W3017303452","https://openalex.org/W3049369823","https://openalex.org/W3176000171","https://openalex.org/W3193576972","https://openalex.org/W3194646605","https://openalex.org/W3202807108","https://openalex.org/W3203185082","https://openalex.org/W4210785440","https://openalex.org/W4221145216","https://openalex.org/W4224919450","https://openalex.org/W4292080463","https://openalex.org/W4312804819","https://openalex.org/W4322502767","https://openalex.org/W4322705817","https://openalex.org/W4323914160","https://openalex.org/W4366148659","https://openalex.org/W4384519384","https://openalex.org/W4388579758","https://openalex.org/W4390776208"],"related_works":["https://openalex.org/W2795035211","https://openalex.org/W2562263695","https://openalex.org/W2162874930","https://openalex.org/W2160108762","https://openalex.org/W2147201983","https://openalex.org/W2135187896","https://openalex.org/W2100805585","https://openalex.org/W2017034551","https://openalex.org/W2015518264","https://openalex.org/W1718066205"],"abstract_inverted_index":{"For":[0],"direction-of-arrival":[1],"(DOA)":[2],"estimation":[3,22,107],"problems":[4,108],"in":[5,57,82,109],"a":[6,51,96,140,228],"sparse":[7,9,40],"domain,":[8],"Bayesian":[10,147],"learning":[11,148],"(SBL)":[12],"is":[13,47,102,116,149,218,235,261],"highly":[14],"favored":[15],"by":[16,65,143,166,201,225],"researchers":[17],"owing":[18],"to":[19,32,34,38,54,72,104,139,248,263,277],"its":[20],"excellent":[21],"performance.":[23],"However,":[24,78],"traditional":[25],"SBL-based":[26],"methods":[27,62,80],"always":[28],"assign":[29],"Gaussian":[30,48,76],"priors":[31,49,68,121,182],"parameters":[33],"be":[35],"solved,":[36],"leading":[37],"moderate":[39],"signal":[41],"recovery":[42],"(SSR)":[43],"effects.":[44],"The":[45,112],"reason":[46],"play":[50],"similar":[52],"role":[53],"l2":[55],"regularization":[56],"sparsity":[58],"constraint.":[59],"Therefore,":[60,129],"numerous":[61],"are":[63,70,81,91,212,275],"developed":[64,103],"adopting":[66],"hierarchical":[67,120,181],"that":[69,146],"used":[71],"perform":[73],"better":[74,184],"than":[75],"priors.":[77],"these":[79],"straitened":[83],"circumstances":[84],"when":[85],"multiple":[86],"measurement":[87,160],"vector":[88,253],"(MMV)":[89],"data":[90],"adopted.":[92],"On":[93,172],"this":[94],"basis,":[95],"block-sparse":[97,123,141],"SBL":[98],"method":[99,229],"(named":[100],"BSBL)":[101],"handle":[105,268],"DOA":[106],"MMV":[110,127,137],"models.":[111],"novelty":[113],"of":[114,119,153,158,169,180,195,208,223,281],"BSBL":[115,134,176,190,224,245,260,282],"the":[117,131,136,154,163,167,173,178,188,193,220,233,237,279],"combination":[118],"and":[122,162,232,267],"model":[124,138,142],"originating":[125],"from":[126],"data.":[128],"on":[130],"one":[132],"hand,":[133,175],"transfers":[135],"vectorization":[144],"so":[145,246],"directly":[150],"performed,":[151],"regardless":[152],"prior":[155],"independent":[156],"assumption":[157],"different":[159],"vectors":[161],"inconvenience":[164],"caused":[165,200],"solution":[168],"matrix":[170,204,221,250],"form.":[171],"other":[174,234,284],"inherited":[177],"advantage":[179],"for":[183,214],"SSR":[185],"ability.":[186],"Despite":[187],"benefit,":[189],"still":[191],"has":[192],"disadvantage":[194],"relatively":[196],"large":[197],"computation":[198],"complexity":[199],"high":[202],"dimensional":[203],"operations.":[205],"In":[206],"view":[207],"this,":[209],"two":[210],"operations":[211,251],"implemented":[213],"low":[215],"complexity.":[216],"One":[217],"reducing":[219],"dimension":[222],"approximation,":[226],"generating":[227],"named":[230,257],"BSBL-APPR,":[231],"embedding":[236],"generalized":[238],"approximate":[239],"message":[240],"passing":[241],"(GAMB)":[242],"technique":[243],"into":[244,252],"as":[247],"decompose":[249],"or":[254],"scale":[255],"operations,":[256],"BSBL-GAMP.":[258],"Moreover,":[259],"able":[262],"suppress":[264],"temporal":[265],"correlation":[266],"wideband":[269],"sources":[270],"easily.":[271],"Extensive":[272],"simulation":[273],"results":[274],"presented":[276],"prove":[278],"superiority":[280],"over":[283],"state-of-the-art":[285],"algorithms.":[286]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4394577291","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-03-26T09:41:35.334676","created_date":"2024-04-09"}