{"id":"https://openalex.org/W4382313309","doi":"https://doi.org/10.3390/s23104688","title":"Ensembles of Convolutional Neural Networks and Transformers for Polyp Segmentation","display_name":"Ensembles of Convolutional Neural Networks and Transformers for Polyp Segmentation","publication_year":2023,"publication_date":"2023-05-12","ids":{"openalex":"https://openalex.org/W4382313309","doi":"https://doi.org/10.3390/s23104688","pmid":"https://pubmed.ncbi.nlm.nih.gov/37430601"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s23104688","pdf_url":"https://www.mdpi.com/1424-8220/23/10/4688/pdf?version=1683875264","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"review","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.mdpi.com/1424-8220/23/10/4688/pdf?version=1683875264","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5007729428","display_name":"Loris Nanni","orcid":"https://orcid.org/0000-0002-3502-7209"},"institutions":[{"id":"https://openalex.org/I138689650","display_name":"University of Padua","ror":"https://ror.org/00240q980","country_code":"IT","type":"funder","lineage":["https://openalex.org/I138689650"]}],"countries":["IT"],"is_corresponding":true,"raw_author_name":"Loris Nanni","raw_affiliation_strings":["Department of Information Engineering, University of Padova, 35122 Padova, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Information Engineering, University of Padova, 35122 Padova, Italy","institution_ids":["https://openalex.org/I138689650"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021518640","display_name":"Carlo Fantozzi","orcid":"https://orcid.org/0000-0003-3210-4632"},"institutions":[{"id":"https://openalex.org/I138689650","display_name":"University of Padua","ror":"https://ror.org/00240q980","country_code":"IT","type":"funder","lineage":["https://openalex.org/I138689650"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Carlo Fantozzi","raw_affiliation_strings":["Department of Information Engineering, University of Padova, 35122 Padova, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Information Engineering, University of Padova, 35122 Padova, Italy","institution_ids":["https://openalex.org/I138689650"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5029045409","display_name":"Andrea Loreggia","orcid":"https://orcid.org/0000-0002-9846-0157"},"institutions":[{"id":"https://openalex.org/I79940851","display_name":"University of Brescia","ror":"https://ror.org/02q2d2610","country_code":"IT","type":"funder","lineage":["https://openalex.org/I79940851"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Andrea Loreggia","raw_affiliation_strings":["Department of Information Engineering, University of Brescia, 25121 Brescia, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Information Engineering, University of Brescia, 25121 Brescia, Italy","institution_ids":["https://openalex.org/I79940851"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5062639338","display_name":"Alessandra Lumini","orcid":"https://orcid.org/0000-0003-0290-7354"},"institutions":[{"id":"https://openalex.org/I9360294","display_name":"University of Bologna","ror":"https://ror.org/01111rn36","country_code":"IT","type":"funder","lineage":["https://openalex.org/I9360294"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Alessandra Lumini","raw_affiliation_strings":["Department of Computer Science and Engineering, University of Bologna, 40126 Bologna, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, University of Bologna, 40126 Bologna, Italy","institution_ids":["https://openalex.org/I9360294"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":["https://openalex.org/A5007729428"],"corresponding_institution_ids":["https://openalex.org/I138689650"],"apc_list":{"value":2400,"currency":"CHF","value_usd":2598},"apc_paid":{"value":2400,"currency":"CHF","value_usd":2598},"fwci":1.286,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":12,"citation_normalized_percentile":{"value":0.997449,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":"23","issue":"10","first_page":"4688","last_page":"4688"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9933,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.7853446},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.78433836},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7423922},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.66722727},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.55984},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.54893446},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5096135},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4429506},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.44262004},{"id":"https://openalex.org/C66322947","wikidata":"https://www.wikidata.org/wiki/Q11658","display_name":"Transformer","level":3,"score":0.43901372},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C165801399","wikidata":"https://www.wikidata.org/wiki/Q25428","display_name":"Voltage","level":2,"score":0.0}],"mesh":[{"descriptor_ui":"D011211","descriptor_name":"Electric Power Supplies","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D019359","descriptor_name":"Knowledge","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D007858","descriptor_name":"Learning","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D016571","descriptor_name":"Neural Networks, Computer","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D012660","descriptor_name":"Semantics","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":5,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s23104688","pdf_url":"https://www.mdpi.com/1424-8220/23/10/4688/pdf?version=1683875264","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://hdl.handle.net/11585/959154","pdf_url":"https://cris.unibo.it/bitstream/11585/959154/1/sensors-23-04688.pdf","source":{"id":"https://openalex.org/S4306402579","display_name":"Archivio istituzionale della ricerca (Alma Mater Studiorum Universit\u00e0 di Bologna)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210117483","host_organization_name":"Istituto di Ematologia di Bologna","host_organization_lineage":["https://openalex.org/I4210117483"],"host_organization_lineage_names":["Istituto di Ematologia di Bologna"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://hdl.handle.net/11577/3483122","pdf_url":"https://www.research.unipd.it/bitstream/11577/3483122/1/sensors-23-04688.pdf","source":{"id":"https://openalex.org/S4306402448","display_name":"Padua Research Archive (University of Padua)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I138689650","host_organization_name":"University of Padua","host_organization_lineage":["https://openalex.org/I138689650"],"host_organization_lineage_names":["University of Padua"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224477","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/37430601","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s23104688","pdf_url":"https://www.mdpi.com/1424-8220/23/10/4688/pdf?version=1683875264","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","score":0.72,"display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":52,"referenced_works":["https://openalex.org/W2008359794","https://openalex.org/W2021088830","https://openalex.org/W2034269173","https://openalex.org/W2077474654","https://openalex.org/W2194775991","https://openalex.org/W2285968993","https://openalex.org/W2499316477","https://openalex.org/W2560328367","https://openalex.org/W2565639579","https://openalex.org/W2608337291","https://openalex.org/W2623808523","https://openalex.org/W2727943894","https://openalex.org/W2734349601","https://openalex.org/W2766726453","https://openalex.org/W2884436604","https://openalex.org/W2910187721","https://openalex.org/W2917989249","https://openalex.org/W2922350069","https://openalex.org/W2954996726","https://openalex.org/W2970602317","https://openalex.org/W2980633303","https://openalex.org/W2999580839","https://openalex.org/W3009963727","https://openalex.org/W3034785488","https://openalex.org/W3043606932","https://openalex.org/W3088047400","https://openalex.org/W3112139896","https://openalex.org/W3112701542","https://openalex.org/W3132455321","https://openalex.org/W3165086995","https://openalex.org/W3170841864","https://openalex.org/W3176923149","https://openalex.org/W3187286114","https://openalex.org/W3202263958","https://openalex.org/W3204995672","https://openalex.org/W3212951247","https://openalex.org/W4200519332","https://openalex.org/W4210465915","https://openalex.org/W4224232907","https://openalex.org/W4224310580","https://openalex.org/W4234374459","https://openalex.org/W4238070344","https://openalex.org/W4243329857","https://openalex.org/W4281694924","https://openalex.org/W4282914989","https://openalex.org/W4285722717","https://openalex.org/W4289085709","https://openalex.org/W4293680532","https://openalex.org/W4302009288","https://openalex.org/W4308456711","https://openalex.org/W4308745954","https://openalex.org/W4321021178"],"related_works":["https://openalex.org/W4380075502","https://openalex.org/W4321369474","https://openalex.org/W4312417841","https://openalex.org/W4285827401","https://openalex.org/W4200173597","https://openalex.org/W3133861977","https://openalex.org/W3116150086","https://openalex.org/W2999805992","https://openalex.org/W2790662084","https://openalex.org/W2731899572"],"abstract_inverted_index":{"In":[0,57,72,167],"the":[1,9,17,41,62,69,80,156,164,172,176,192,198,203],"realm":[2],"of":[3,11,27,49,65,79,103,175,202],"computer":[4],"vision,":[5],"semantic":[6,50],"segmentation":[7,51,89,157],"is":[8,21,32,55],"task":[10,31],"recognizing":[12],"objects":[13],"in":[14,52],"images":[15],"at":[16],"pixel":[18],"level.":[19],"This":[20],"done":[22],"by":[23,159],"performing":[24],"a":[25,77,144,151],"classification":[26],"each":[28],"pixel.":[29],"The":[30,47,101],"complex":[33],"and":[34,38,90,99,122,132],"requires":[35],"sophisticated":[36],"skills":[37],"knowledge":[39],"about":[40],"context":[42],"to":[43,139,142,154],"identify":[44],"objects'":[45],"boundaries.":[46],"importance":[48],"many":[53],"domains":[54],"undisputed.":[56],"medical":[58],"diagnostics,":[59],"it":[60],"simplifies":[61],"early":[63],"detection":[64],"pathologies,":[66],"thus":[67],"mitigating":[68],"possible":[70],"consequences.":[71],"this":[73,114],"work,":[74],"we":[75,116,136,149,188],"provide":[76],"review":[78],"literature":[81],"on":[82,95,200],"deep":[83],"ensemble":[84,106],"learning":[85,133],"models":[86,119],"for":[87,214],"polyp":[88],"develop":[91],"new":[92,152],"ensembles":[93,178,193],"based":[94],"convolutional":[96],"neural":[97],"networks":[98],"transformers.":[100],"development":[102],"an":[104],"effective":[105],"entails":[107],"ensuring":[108],"diversity":[109],"between":[110],"its":[111],"components.":[112],"To":[113],"end,":[115],"combined":[117],"different":[118,126],"(HarDNet-MSEG,":[120],"Polyp-PVT,":[121],"HSNet)":[123],"trained":[124,213],"with":[125],"data":[127],"augmentation":[128],"techniques,":[129],"optimization":[130],"methods,":[131],"rates,":[134],"which":[135],"experimentally":[137],"demonstrate":[138],"be":[140],"useful":[141],"form":[143],"better":[145,196],"ensemble.":[146],"Most":[147],"importantly,":[148],"introduce":[150],"method":[153],"obtain":[155],"mask":[158],"averaging":[160],"intermediate":[161],"masks":[162],"after":[163],"sigmoid":[165],"layer.":[166],"our":[168],"extensive":[169],"experimental":[170],"evaluation,":[171],"average":[173],"performance":[174],"proposed":[177],"over":[179],"five":[180,204],"prominent":[181],"datasets":[182],"beat":[183],"any":[184],"other":[185],"solution":[186],"that":[187],"know":[189],"of.":[190],"Furthermore,":[191],"also":[194],"performed":[195],"than":[197],"state-of-the-art":[199],"two":[201],"datasets,":[205],"when":[206],"individually":[207],"considered,":[208],"without":[209],"having":[210],"been":[211],"specifically":[212],"them.":[215]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4382313309","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":8},{"year":2023,"cited_by_count":3}],"updated_date":"2025-02-19T22:44:05.736779","created_date":"2023-06-28"}