{"id":"https://openalex.org/W4315786962","doi":"https://doi.org/10.3390/s23020849","title":"Novel Deep Learning Network for Gait Recognition Using Multimodal Inertial Sensors","display_name":"Novel Deep Learning Network for Gait Recognition Using Multimodal Inertial Sensors","publication_year":2023,"publication_date":"2023-01-11","ids":{"openalex":"https://openalex.org/W4315786962","doi":"https://doi.org/10.3390/s23020849","pmid":"https://pubmed.ncbi.nlm.nih.gov/36679646"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s23020849","pdf_url":"https://www.mdpi.com/1424-8220/23/2/849/pdf?version=1673434193","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.mdpi.com/1424-8220/23/2/849/pdf?version=1673434193","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5006568361","display_name":"Ling\u2010Feng Shi","orcid":"https://orcid.org/0000-0003-2638-9643"},"institutions":[{"id":"https://openalex.org/I149594827","display_name":"Xidian University","ror":"https://ror.org/05s92vm98","country_code":"CN","type":"funder","lineage":["https://openalex.org/I149594827"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Ling-Feng Shi","raw_affiliation_strings":["School of Electronic Engineering, Xidian University, Xi'an 710071, China"],"affiliations":[{"raw_affiliation_string":"School of Electronic Engineering, Xidian University, Xi'an 710071, China","institution_ids":["https://openalex.org/I149594827"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5053067601","display_name":"Zhong-Ye Liu","orcid":null},"institutions":[{"id":"https://openalex.org/I149594827","display_name":"Xidian University","ror":"https://ror.org/05s92vm98","country_code":"CN","type":"funder","lineage":["https://openalex.org/I149594827"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhong-Ye Liu","raw_affiliation_strings":["School of Electronic Engineering, Xidian University, Xi'an 710071, China"],"affiliations":[{"raw_affiliation_string":"School of Electronic Engineering, Xidian University, Xi'an 710071, China","institution_ids":["https://openalex.org/I149594827"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5111188635","display_name":"Kejun Zhou","orcid":null},"institutions":[{"id":"https://openalex.org/I149594827","display_name":"Xidian University","ror":"https://ror.org/05s92vm98","country_code":"CN","type":"funder","lineage":["https://openalex.org/I149594827"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ke-Jun Zhou","raw_affiliation_strings":["School of Electronic Engineering, Xidian University, Xi'an 710071, China"],"affiliations":[{"raw_affiliation_string":"School of Electronic Engineering, Xidian University, Xi'an 710071, China","institution_ids":["https://openalex.org/I149594827"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087749419","display_name":"Yifan Shi","orcid":"https://orcid.org/0000-0003-3697-4731"},"institutions":[{"id":"https://openalex.org/I204722609","display_name":"Queen's University","ror":"https://ror.org/02y72wh86","country_code":"CA","type":"funder","lineage":["https://openalex.org/I204722609"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Yifan Shi","raw_affiliation_strings":["Department of Mechanical and Materials Engineering, Queen's University, 130 Stuart Street, Kingston, ON K7L 3N6, Canada"],"affiliations":[{"raw_affiliation_string":"Department of Mechanical and Materials Engineering, Queen's University, 130 Stuart Street, Kingston, ON K7L 3N6, Canada","institution_ids":["https://openalex.org/I204722609"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100721759","display_name":"Jing Xiao","orcid":"https://orcid.org/0000-0002-8503-3041"},"institutions":[{"id":"https://openalex.org/I130701444","display_name":"Georgia Institute of Technology","ror":"https://ror.org/01zkghx44","country_code":"US","type":"funder","lineage":["https://openalex.org/I130701444"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Xiao Jing","raw_affiliation_strings":["School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA"],"affiliations":[{"raw_affiliation_string":"School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA","institution_ids":["https://openalex.org/I130701444"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":3,"corresponding_author_ids":["https://openalex.org/A5006568361"],"corresponding_institution_ids":["https://openalex.org/I149594827"],"apc_list":{"value":2400,"currency":"CHF","value_usd":2598},"apc_paid":{"value":2400,"currency":"CHF","value_usd":2598},"fwci":6.328,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":32,"citation_normalized_percentile":{"value":0.999977,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":"23","issue":"2","first_page":"849","last_page":"849"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12740","display_name":"Gait Recognition and Analysis","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12740","display_name":"Gait Recognition and Analysis","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9945,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11196","display_name":"Non-Invasive Vital Sign Monitoring","score":0.9927,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.60271853},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.5395931},{"id":"https://openalex.org/keywords/activity-recognition","display_name":"Activity Recognition","score":0.4399894}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.79683137},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.67837226},{"id":"https://openalex.org/C151800584","wikidata":"https://www.wikidata.org/wiki/Q2370000","display_name":"Gait","level":2,"score":0.6178241},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.60446274},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.60271853},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.58134717},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.5395931},{"id":"https://openalex.org/C158488048","wikidata":"https://www.wikidata.org/wiki/Q483400","display_name":"Gyroscope","level":2,"score":0.50611776},{"id":"https://openalex.org/C79061980","wikidata":"https://www.wikidata.org/wiki/Q941680","display_name":"Inertial measurement unit","level":2,"score":0.48338643},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.47460192},{"id":"https://openalex.org/C150594956","wikidata":"https://www.wikidata.org/wiki/Q1334829","display_name":"Wearable computer","level":2,"score":0.4489842},{"id":"https://openalex.org/C121687571","wikidata":"https://www.wikidata.org/wiki/Q4677630","display_name":"Activity recognition","level":2,"score":0.4399894},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.41713306},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.10800305},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C42407357","wikidata":"https://www.wikidata.org/wiki/Q521","display_name":"Physiology","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.0},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[{"descriptor_ui":"D000077321","descriptor_name":"Deep Learning","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D000054","descriptor_name":"Acceleration","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D005684","descriptor_name":"Gait","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D057567","descriptor_name":"Memory, Long-Term","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D016571","descriptor_name":"Neural Networks, Computer","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s23020849","pdf_url":"https://www.mdpi.com/1424-8220/23/2/849/pdf?version=1673434193","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867501","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/36679646","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s23020849","pdf_url":"https://www.mdpi.com/1424-8220/23/2/849/pdf?version=1673434193","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":31,"referenced_works":["https://openalex.org/W1989324306","https://openalex.org/W2008854521","https://openalex.org/W2017634428","https://openalex.org/W2148048965","https://openalex.org/W2150383810","https://openalex.org/W2593887211","https://openalex.org/W2620371446","https://openalex.org/W2789525912","https://openalex.org/W2889538191","https://openalex.org/W2895290907","https://openalex.org/W2902900517","https://openalex.org/W2953491861","https://openalex.org/W2968262827","https://openalex.org/W2992312320","https://openalex.org/W3003728340","https://openalex.org/W3011785450","https://openalex.org/W3015505405","https://openalex.org/W3037451678","https://openalex.org/W3048952742","https://openalex.org/W3089186933","https://openalex.org/W3094017527","https://openalex.org/W3126566816","https://openalex.org/W3161132553","https://openalex.org/W3188277880","https://openalex.org/W3193597430","https://openalex.org/W3203799784","https://openalex.org/W3211102212","https://openalex.org/W3216111612","https://openalex.org/W4210654500","https://openalex.org/W4223644476","https://openalex.org/W4225723284"],"related_works":["https://openalex.org/W4287084017","https://openalex.org/W3208523813","https://openalex.org/W3195533899","https://openalex.org/W3179745820","https://openalex.org/W2594666386","https://openalex.org/W2545638156","https://openalex.org/W2537790823","https://openalex.org/W2359095091","https://openalex.org/W2000754062","https://openalex.org/W1973973903"],"abstract_inverted_index":{"Some":[0],"recent":[1],"studies":[2],"use":[3],"a":[4,28,60,94,117,135],"convolutional":[5],"neural":[6],"network":[7,98,181],"(CNN)":[8],"or":[9],"long":[10,79],"short-term":[11],"memory":[12],"(LSTM)":[13],"to":[14,59,143,184],"extract":[15,125,144,185],"gait":[16,39,55,100,206],"features,":[17],"but":[18,71],"the":[19,23,86,121,128,145,149,155,159,161,164,169,172,178,186,190,200,211,218,245,252],"methods":[20],"based":[21],"on":[22,114,217,224,251],"CNN":[24,45,53,83],"and":[25,34,50,116,131,168,202,231],"LSTM":[26,66,72,97,119,180],"have":[27],"high":[29],"loss":[30],"rate":[31],"of":[32,63,88,148,158,163,171,189,213,242],"time-series":[33,42,64,69,156,187],"spatial":[35],"information,":[36],"respectively.":[37],"Since":[38],"has":[40],"obvious":[41],"characteristics,":[43,49,70],"while":[44],"only":[46,51],"collects":[47],"waveform":[48],"uses":[52,195],"for":[54,99],"recognition,":[56],"this":[57,92],"leads":[58],"certain":[61],"lack":[62],"characteristics.":[65],"can":[67,84,123],"collect":[68],"results":[73,234],"in":[74],"performance":[75,247],"degradation":[76],"when":[77],"processing":[78],"sequences.":[80],"However,":[81],"using":[82,102],"compress":[85],"length":[87,170],"feature":[89,137,173],"vectors.":[90],"In":[91],"paper,":[93],"sequential":[95],"convolution":[96],"recognition":[101,219],"multimodal":[103],"wearable":[104],"inertial":[105,150],"sensors":[106],"is":[107,110,140,166,175,182],"proposed,":[108],"which":[109,209],"called":[111],"SConvLSTM.":[112],"Based":[113],"1D-CNN":[115,139],"bidirectional":[118,179],"network,":[120],"method":[122,194],"automatically":[124],"features":[126,147,157,165,188],"from":[127],"raw":[129],"acceleration":[130],"gyroscope":[132],"signals":[133],"without":[134],"manual":[136],"design.":[138],"first":[141],"used":[142,183],"high-dimensional":[146],"sensor":[151],"signals.":[152],"While":[153],"retaining":[154],"data,":[160],"dimension":[162],"expanded,":[167],"vectors":[174],"compressed.":[176],"Then,":[177],"data.":[191],"The":[192,233],"proposed":[193],"fixed-length":[196],"data":[197],"frames":[198],"as":[199],"input":[201],"does":[203],"not":[204],"require":[205],"cycle":[207,214],"detection,":[208],"avoids":[210],"impact":[212],"detection":[215],"errors":[216],"accuracy.":[220],"We":[221],"performed":[222],"experiments":[223],"three":[225,253],"public":[226],"benchmark":[227],"datasets:":[228],"UCI-HAR,":[229],"HuGaDB,":[230],"WISDM.":[232],"show":[235],"that":[236],"SConvLSTM":[237],"performs":[238],"better":[239],"than":[240],"most":[241],"those":[243],"reporting":[244],"best":[246],"methods,":[248],"at":[249],"present,":[250],"datasets.":[254]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4315786962","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":17},{"year":2023,"cited_by_count":14}],"updated_date":"2025-02-22T23:13:06.360522","created_date":"2023-01-13"}