{"id":"https://openalex.org/W4298110865","doi":"https://doi.org/10.3390/s22197409","title":"BoostedEnML: Efficient Technique for Detecting Cyberattacks in IoT Systems Using Boosted Ensemble Machine Learning","display_name":"BoostedEnML: Efficient Technique for Detecting Cyberattacks in IoT Systems Using Boosted Ensemble Machine Learning","publication_year":2022,"publication_date":"2022-09-29","ids":{"openalex":"https://openalex.org/W4298110865","doi":"https://doi.org/10.3390/s22197409","pmid":"https://pubmed.ncbi.nlm.nih.gov/36236506"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s22197409","pdf_url":"https://www.mdpi.com/1424-8220/22/19/7409/pdf?version=1664447896","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj","pubmed"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.mdpi.com/1424-8220/22/19/7409/pdf?version=1664447896","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5058982389","display_name":"Ogobuchi Daniel Okey","orcid":"https://orcid.org/0000-0003-0686-2763"},"institutions":[{"id":"https://openalex.org/I1315085146","display_name":"Universidade Federal de Lavras","ror":"https://ror.org/0122bmm03","country_code":"BR","type":"funder","lineage":["https://openalex.org/I1315085146"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Ogobuchi Daniel Okey","raw_affiliation_strings":["Department of Systems Engineering and Automation, Federal University of Lavras, Lavras 37203-202, MG, Brazil"],"affiliations":[{"raw_affiliation_string":"Department of Systems Engineering and Automation, Federal University of Lavras, Lavras 37203-202, MG, Brazil","institution_ids":["https://openalex.org/I1315085146"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038992452","display_name":"Siti Sarah Maidin","orcid":null},"institutions":[{"id":"https://openalex.org/I12649496","display_name":"INTI International University","ror":"https://ror.org/03fj82m46","country_code":"MY","type":"education","lineage":["https://openalex.org/I12649496"]}],"countries":["MY"],"is_corresponding":true,"raw_author_name":"Siti Sarah Maidin","raw_affiliation_strings":["Faculty of Data Science and Information Technology (FDSIT), INTI International University, Nilai 71800, Malaysia"],"affiliations":[{"raw_affiliation_string":"Faculty of Data Science and Information Technology (FDSIT), INTI International University, Nilai 71800, Malaysia","institution_ids":["https://openalex.org/I12649496"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5024505998","display_name":"Pablo Adasme","orcid":"https://orcid.org/0000-0003-2500-3294"},"institutions":[{"id":"https://openalex.org/I10457146","display_name":"Universidad de Santiago de Chile","ror":"https://ror.org/02ma57s91","country_code":"CL","type":"funder","lineage":["https://openalex.org/I10457146"]}],"countries":["CL"],"is_corresponding":false,"raw_author_name":"Pablo Adasme","raw_affiliation_strings":["Department of Electrical Engineering, University of Santiago de Chile, Santiago 9170124, Chile"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering, University of Santiago de Chile, Santiago 9170124, Chile","institution_ids":["https://openalex.org/I10457146"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5068813665","display_name":"Renata Lopes Rosa","orcid":"https://orcid.org/0000-0002-5839-0692"},"institutions":[{"id":"https://openalex.org/I1315085146","display_name":"Universidade Federal de Lavras","ror":"https://ror.org/0122bmm03","country_code":"BR","type":"funder","lineage":["https://openalex.org/I1315085146"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Renata Lopes Rosa","raw_affiliation_strings":["Department of Computer Science, Federal University of Lavras, Lavras 37200-000, MG, Brazil"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, Federal University of Lavras, Lavras 37200-000, MG, Brazil","institution_ids":["https://openalex.org/I1315085146"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5035372534","display_name":"Muhammad Saadi","orcid":"https://orcid.org/0000-0001-7901-7435"},"institutions":[{"id":"https://openalex.org/I192392021","display_name":"University of Central Punjab","ror":"https://ror.org/04g0mqe67","country_code":"PK","type":"funder","lineage":["https://openalex.org/I192392021"]}],"countries":["PK"],"is_corresponding":false,"raw_author_name":"Muhammad Saadi","raw_affiliation_strings":["Department of Electrical Engineering, University of Central Punjab, Lahore 54000, Pakistan"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering, University of Central Punjab, Lahore 54000, Pakistan","institution_ids":["https://openalex.org/I192392021"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083003965","display_name":"Dick Carrillo","orcid":"https://orcid.org/0000-0001-7290-5755"},"institutions":[{"id":"https://openalex.org/I63548447","display_name":"Lappeenranta-Lahti University of Technology","ror":"https://ror.org/0208vgz68","country_code":"FI","type":"funder","lineage":["https://openalex.org/I63548447"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Dick Carrillo Melgarejo","raw_affiliation_strings":["Department of Electrical Engineering, School of Energy Systems, Lappeenranta-Lahti University of Technology, FI-53851 Lappeenranta, Finland"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering, School of Energy Systems, Lappeenranta-Lahti University of Technology, FI-53851 Lappeenranta, Finland","institution_ids":["https://openalex.org/I63548447"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5063050171","display_name":"Dem\u00f3stenes Zegarra Rodr\u00edguez","orcid":"https://orcid.org/0000-0001-5401-7551"},"institutions":[{"id":"https://openalex.org/I1315085146","display_name":"Universidade Federal de Lavras","ror":"https://ror.org/0122bmm03","country_code":"BR","type":"funder","lineage":["https://openalex.org/I1315085146"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Dem\u00f3stenes Zegarra Rodr\u00edguez","raw_affiliation_strings":["Department of Computer Science, Federal University of Lavras, Lavras 37200-000, MG, Brazil"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, Federal University of Lavras, Lavras 37200-000, MG, Brazil","institution_ids":["https://openalex.org/I1315085146"]}]}],"institution_assertions":[],"countries_distinct_count":5,"institutions_distinct_count":5,"corresponding_author_ids":["https://openalex.org/A5038992452"],"corresponding_institution_ids":["https://openalex.org/I12649496"],"apc_list":{"value":2400,"currency":"CHF","value_usd":2598},"apc_paid":{"value":2400,"currency":"CHF","value_usd":2598},"fwci":6.199,"has_fulltext":false,"cited_by_count":35,"citation_normalized_percentile":{"value":0.821584,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"22","issue":"19","first_page":"7409","last_page":"7409"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11241","display_name":"Advanced Malware Detection Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/botnet","display_name":"Botnet","score":0.7354331},{"id":"https://openalex.org/keywords/ensemble-learning","display_name":"Ensemble Learning","score":0.48227456},{"id":"https://openalex.org/keywords/boosting","display_name":"Boosting","score":0.474104},{"id":"https://openalex.org/keywords/planetlab","display_name":"PlanetLab","score":0.42473817}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.79829586},{"id":"https://openalex.org/C22735295","wikidata":"https://www.wikidata.org/wiki/Q317671","display_name":"Botnet","level":3,"score":0.7354331},{"id":"https://openalex.org/C38822068","wikidata":"https://www.wikidata.org/wiki/Q131406","display_name":"Denial-of-service attack","level":3,"score":0.7226501},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.6613199},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5701649},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.53866947},{"id":"https://openalex.org/C45942800","wikidata":"https://www.wikidata.org/wiki/Q245652","display_name":"Ensemble learning","level":2,"score":0.48227456},{"id":"https://openalex.org/C46686674","wikidata":"https://www.wikidata.org/wiki/Q466303","display_name":"Boosting (machine learning)","level":2,"score":0.474104},{"id":"https://openalex.org/C35525427","wikidata":"https://www.wikidata.org/wiki/Q745881","display_name":"Intrusion detection system","level":2,"score":0.44730493},{"id":"https://openalex.org/C81860439","wikidata":"https://www.wikidata.org/wiki/Q251212","display_name":"Internet of Things","level":2,"score":0.44298357},{"id":"https://openalex.org/C84525736","wikidata":"https://www.wikidata.org/wiki/Q831366","display_name":"Decision tree","level":2,"score":0.43056256},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.42556232},{"id":"https://openalex.org/C2780300890","wikidata":"https://www.wikidata.org/wiki/Q851973","display_name":"PlanetLab","level":3,"score":0.42473817},{"id":"https://openalex.org/C52001869","wikidata":"https://www.wikidata.org/wiki/Q812530","display_name":"Naive Bayes classifier","level":3,"score":0.41094536},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.3681905},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3606392},{"id":"https://openalex.org/C110875604","wikidata":"https://www.wikidata.org/wiki/Q75","display_name":"The Internet","level":2,"score":0.24178508},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.21906915},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.0}],"mesh":[{"descriptor_ui":"D000080487","descriptor_name":"Internet of Things","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D000465","descriptor_name":"Algorithms","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D019540","descriptor_name":"Area Under Curve","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D000069550","descriptor_name":"Machine Learning","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":4,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s22197409","pdf_url":"https://www.mdpi.com/1424-8220/22/19/7409/pdf?version=1664447896","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/6a5d4975d0d34f0a917b5b7b692a69fa","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572777","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/36236506","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s22197409","pdf_url":"https://www.mdpi.com/1424-8220/22/19/7409/pdf?version=1664447896","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":72,"referenced_works":["https://openalex.org/W1455621148","https://openalex.org/W1534477342","https://openalex.org/W1550585437","https://openalex.org/W1678356000","https://openalex.org/W1985987493","https://openalex.org/W1996575854","https://openalex.org/W2003233718","https://openalex.org/W2083911205","https://openalex.org/W2099218848","https://openalex.org/W2101234009","https://openalex.org/W2158698691","https://openalex.org/W2254491121","https://openalex.org/W2295598076","https://openalex.org/W2327035729","https://openalex.org/W2487770199","https://openalex.org/W2512144135","https://openalex.org/W2523827785","https://openalex.org/W2602516395","https://openalex.org/W2768348081","https://openalex.org/W2786743105","https://openalex.org/W2789758093","https://openalex.org/W2789828921","https://openalex.org/W2800788706","https://openalex.org/W2808779485","https://openalex.org/W28412257","https://openalex.org/W2888030392","https://openalex.org/W2895233886","https://openalex.org/W2902106343","https://openalex.org/W2907351452","https://openalex.org/W2908737782","https://openalex.org/W2911964244","https://openalex.org/W2913497771","https://openalex.org/W2946445608","https://openalex.org/W2979590797","https://openalex.org/W2987773949","https://openalex.org/W2991140181","https://openalex.org/W3009513989","https://openalex.org/W3014600074","https://openalex.org/W3014732532","https://openalex.org/W3020687048","https://openalex.org/W3047589287","https://openalex.org/W3049204557","https://openalex.org/W3082012450","https://openalex.org/W3092149785","https://openalex.org/W3093621053","https://openalex.org/W3095245623","https://openalex.org/W3108481873","https://openalex.org/W3108630703","https://openalex.org/W3112343206","https://openalex.org/W3113826220","https://openalex.org/W3117137387","https://openalex.org/W3120086307","https://openalex.org/W3120934607","https://openalex.org/W3137750955","https://openalex.org/W3156522613","https://openalex.org/W3157189912","https://openalex.org/W3165272742","https://openalex.org/W3170348203","https://openalex.org/W3182395383","https://openalex.org/W3190260840","https://openalex.org/W3198775197","https://openalex.org/W3209622650","https://openalex.org/W3209772198","https://openalex.org/W4200245370","https://openalex.org/W4200465382","https://openalex.org/W4205413245","https://openalex.org/W4211239221","https://openalex.org/W4212883601","https://openalex.org/W4214520057","https://openalex.org/W4236137412","https://openalex.org/W4250892689","https://openalex.org/W4399647672"],"related_works":["https://openalex.org/W42609249","https://openalex.org/W4230824443","https://openalex.org/W2592877159","https://openalex.org/W2559738661","https://openalex.org/W2135797138","https://openalex.org/W2097156747","https://openalex.org/W2038807247","https://openalex.org/W2033775679","https://openalex.org/W2003752564","https://openalex.org/W1979307418"],"abstract_inverted_index":{"Following":[0],"the":[1,28,70,103,137,187,228,264,274,289,292,305,329,338],"recent":[2],"advances":[3],"in":[4,54,76,319,334],"wireless":[5],"communication":[6],"leading":[7],"to":[8,25,41,56,124,140,223,262],"increased":[9],"Internet":[10],"of":[11,32,72,74,85,102,105,136,206,210,291,304,307,321],"Things":[12],"(IoT)":[13],"systems,":[14,22,34],"many":[15],"security":[16],"threats":[17],"are":[18,38],"currently":[19],"ravaging":[20],"IoT":[21,33,60,77,106,129],"causing":[23],"harm":[24,43],"information.":[26],"Considering":[27],"vast":[29],"application":[30],"areas":[31],"ensuring":[35],"that":[36,233,313],"cyberattacks":[37,153],"holistically":[39],"detected":[40],"avoid":[42],"is":[44,100,134,165,302],"paramount.":[45],"Machine":[46],"learning":[47],"(ML)":[48],"algorithms":[49],"have":[50,111],"demonstrated":[51],"high":[52],"capacity":[53],"helping":[55],"mitigate":[57],"attacks":[58,88],"on":[59,158,273,337],"devices":[61],"and":[62,94,121,154,180,182,190,219,226,238,251,269,286,326],"other":[63],"edge":[64],"systems":[65],"with":[66,89,114,192,245],"reasonable":[67],"accuracy.":[68],"However,":[69],"dynamics":[71],"operation":[73],"intruders":[75],"networks":[78],"require":[79],"more":[80],"improved":[81],"IDS":[82,126,229],"models":[83,127,318],"capable":[84],"detecting":[86,152],"multiple":[87],"a":[90,193,236,296],"higher":[91],"detection":[92],"rate":[93],"lower":[95],"computational":[96],"resource":[97],"requirement,":[98],"which":[99,301],"one":[101,135],"challenges":[104],"systems.":[107],"Many":[108],"ensemble":[109,143,185,317],"methods":[110],"been":[112],"used":[113,139,222,259],"different":[115,172,198],"ML":[116,160,173],"classifiers,":[117],"including":[118,203],"decision":[119],"trees":[120],"random":[122],"forests,":[123],"propose":[125],"for":[128,151,341],"environments.":[130],"The":[131],"boosting":[132],"method":[133,150,189],"approaches":[138],"design":[141],"an":[142,148,184],"classifier.":[144],"This":[145],"paper":[146],"proposes":[147],"efficient":[149,239,299],"network":[155],"intrusions":[156],"based":[157],"boosted":[159],"classifiers.":[161],"Our":[162],"proposed":[163,281],"model":[164,283],"named":[166],"BoostedEnML.":[167],"First,":[168],"we":[169,234,241,258,278],"train":[170],"six":[171],"classifiers":[174,294],"(DT,":[175],"RF,":[176],"ET,":[177],"LGBM,":[178],"AD,":[179],"XGB)":[181],"obtain":[183],"using":[186,284],"stacking":[188],"another":[191],"majority":[194],"voting":[195],"approach.":[196],"Two":[197],"datasets":[199,340],"containing":[200],"high-profile":[201],"attacks,":[202,216],"distributed":[204],"denial":[205,209],"service":[207,211],"(DDoS),":[208],"(DoS),":[212],"botnets,":[213,220],"infiltration,":[214],"web":[215],"heartbleed,":[217],"portscan,":[218],"were":[221],"train,":[224],"evaluate,":[225],"test":[227],"model.":[230],"To":[231],"ensure":[232],"obtained":[235],"holistic":[237],"model,":[240,300],"performed":[242],"data":[243,265],"balancing":[244],"synthetic":[246,253],"minority":[247],"oversampling":[248],"technique":[249],"(SMOTE)":[250],"adaptive":[252],"(ADASYN)":[254],"techniques;":[255],"after":[256],"that,":[257],"stratified":[260],"K-fold":[261],"split":[263],"into":[266],"training,":[267],"validation,":[268],"testing":[270],"sets.":[271],"Based":[272],"best":[275],"two":[276,293],"models,":[277],"construct":[279],"our":[280],"BoostedEnsML":[282,314],"LightGBM":[285],"XGBoost,":[287],"as":[288],"combination":[290],"gives":[295],"lightweight":[297],"yet":[298],"part":[303],"target":[306],"this":[308],"research.":[309],"Experimental":[310],"results":[311],"show":[312],"outperformed":[315],"existing":[316],"terms":[320],"accuracy,":[322],"precision,":[323],"recall,":[324],"F-score,":[325],"area":[327],"under":[328],"curve":[330],"(AUC),":[331],"reaching":[332],"100%":[333],"each":[335],"case":[336],"selected":[339],"multiclass":[342],"classification.":[343]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4298110865","counts_by_year":[{"year":2024,"cited_by_count":18},{"year":2023,"cited_by_count":16},{"year":2022,"cited_by_count":1}],"updated_date":"2025-02-20T08:21:15.159924","created_date":"2022-10-01"}