{"id":"https://openalex.org/W3168126816","doi":"https://doi.org/10.3390/s21124054","title":"HyAdamC: A New Adam-Based Hybrid Optimization Algorithm for Convolution Neural Networks","display_name":"HyAdamC: A New Adam-Based Hybrid Optimization Algorithm for Convolution Neural Networks","publication_year":2021,"publication_date":"2021-06-12","ids":{"openalex":"https://openalex.org/W3168126816","doi":"https://doi.org/10.3390/s21124054","mag":"3168126816","pmid":"https://pubmed.ncbi.nlm.nih.gov/34204695","pmcid":"https://www.ncbi.nlm.nih.gov/pmc/articles/8231656"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s21124054","pdf_url":"https://www.mdpi.com/1424-8220/21/12/4054/pdf","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj","pubmed"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.mdpi.com/1424-8220/21/12/4054/pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5053297562","display_name":"Kyung Soo Kim","orcid":"https://orcid.org/0000-0002-1044-3089"},"institutions":[{"id":"https://openalex.org/I4575257","display_name":"Hanyang University","ror":"https://ror.org/046865y68","country_code":"KR","type":"education","lineage":["https://openalex.org/I4575257"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Kyung-Soo Kim","raw_affiliation_strings":["Center for Computational Social Science, Hanyang University, Seoul 04763, Korea"],"affiliations":[{"raw_affiliation_string":"Center for Computational Social Science, Hanyang University, Seoul 04763, Korea","institution_ids":["https://openalex.org/I4575257"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100677785","display_name":"Yong Suk Choi","orcid":"https://orcid.org/0000-0002-9042-0599"},"institutions":[{"id":"https://openalex.org/I4575257","display_name":"Hanyang University","ror":"https://ror.org/046865y68","country_code":"KR","type":"education","lineage":["https://openalex.org/I4575257"]}],"countries":["KR"],"is_corresponding":true,"raw_author_name":"Yong-Suk Choi","raw_affiliation_strings":["Department of Computer Science and Engineering, Hanyang University, Seoul 04763, Korea"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, Hanyang University, Seoul 04763, Korea","institution_ids":["https://openalex.org/I4575257"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5100677785"],"corresponding_institution_ids":["https://openalex.org/I4575257"],"apc_list":{"value":2400,"currency":"CHF","value_usd":2598,"provenance":"doaj"},"apc_paid":{"value":2400,"currency":"CHF","value_usd":2598,"provenance":"doaj"},"fwci":2.654,"has_fulltext":false,"cited_by_count":26,"citation_normalized_percentile":{"value":0.999939,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":"21","issue":"12","first_page":"4054","last_page":"4054"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12702","display_name":"Brain Tumor Detection and Classification","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/2808","display_name":"Neurology"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.6201589}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.686548},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.68279004},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.62362605},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.6201589},{"id":"https://openalex.org/C79337645","wikidata":"https://www.wikidata.org/wiki/Q779824","display_name":"Outlier","level":2,"score":0.58579874},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.54178035},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.534654},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5263615},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.4835798},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.44467592},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.42807698},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.41183674},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.33762187}],"mesh":[{"descriptor_ui":"D000465","descriptor_name":"Algorithms","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D007091","descriptor_name":"Image Processing, Computer-Assisted","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D016571","descriptor_name":"Neural Networks, Computer","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":5,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s21124054","pdf_url":"https://www.mdpi.com/1424-8220/21/12/4054/pdf","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/efb91a3ea17940dd8733fbaa6098bd91","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://dx.doi.org/10.3390/s21124054","pdf_url":"https://www.mdpi.com/1424-8220/21/12/4054/pdf?version=1623835515","source":{"id":"https://openalex.org/S4306400947","display_name":"MDPI (MDPI AG)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210097602","host_organization_name":"Multidisciplinary Digital Publishing Institute (Switzerland)","host_organization_lineage":["https://openalex.org/I4210097602"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute (Switzerland)"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231656","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/34204695","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s21124054","pdf_url":"https://www.mdpi.com/1424-8220/21/12/4054/pdf","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321681","funder_display_name":"Ministry of Trade, Industry and Energy","award_id":"10077553"},{"funder":"https://openalex.org/F4320322120","funder_display_name":"National Research Foundation of Korea","award_id":"2018R1A5A7059549"},{"funder":"https://openalex.org/F4320322120","funder_display_name":"National Research Foundation of Korea","award_id":"2020R1A2C1014037"}],"datasets":[],"versions":[],"referenced_works_count":43,"referenced_works":["https://openalex.org/W1901129140","https://openalex.org/W1969013163","https://openalex.org/W1980287119","https://openalex.org/W1986990702","https://openalex.org/W2035700792","https://openalex.org/W2051434435","https://openalex.org/W2097117768","https://openalex.org/W2143908786","https://openalex.org/W2146502635","https://openalex.org/W2194775991","https://openalex.org/W2622826443","https://openalex.org/W2904387011","https://openalex.org/W2922073769","https://openalex.org/W2963163009","https://openalex.org/W2963446712","https://openalex.org/W2986507176","https://openalex.org/W2990346675","https://openalex.org/W2996325784","https://openalex.org/W2996906268","https://openalex.org/W2997679978","https://openalex.org/W3004342364","https://openalex.org/W3013601031","https://openalex.org/W3014197384","https://openalex.org/W3023901990","https://openalex.org/W3028015151","https://openalex.org/W3030916542","https://openalex.org/W3034315405","https://openalex.org/W3057365024","https://openalex.org/W3084521418","https://openalex.org/W3093573961","https://openalex.org/W3096567402","https://openalex.org/W3096831136","https://openalex.org/W3096918659","https://openalex.org/W3097819776","https://openalex.org/W3111951952","https://openalex.org/W3115769055","https://openalex.org/W3123456185","https://openalex.org/W3126247264","https://openalex.org/W3136625518","https://openalex.org/W3143351795","https://openalex.org/W3156333129","https://openalex.org/W4220888852","https://openalex.org/W4226164136"],"related_works":["https://openalex.org/W4312417841","https://openalex.org/W4226493464","https://openalex.org/W3193565141","https://openalex.org/W3167935049","https://openalex.org/W3133861977","https://openalex.org/W3103566983","https://openalex.org/W3029198973","https://openalex.org/W2964954556","https://openalex.org/W2951211570","https://openalex.org/W2890372105"],"abstract_inverted_index":{"As":[0],"the":[1,57,70,132],"performance":[2,32,68],"of":[3,110],"devices":[4],"that":[5,126,176],"conduct":[6],"large-scale":[7],"computations":[8],"has":[9],"been":[10,18],"rapidly":[11],"improved,":[12],"various":[13,22,169],"deep":[14,62],"learning":[15,63],"models":[16,71],"have":[17,29,65],"successfully":[19],"utilized":[20],"in":[21,33,61,78,108],"applications.":[23],"Particularly,":[24],"convolution":[25],"neural":[26],"networks":[27],"(CNN)":[28],"shown":[30],"remarkable":[31],"image":[34,39,184,187],"processing":[35],"tasks":[36],"such":[37],"as":[38],"classification":[40,185],"and":[41,46,75,113,163,186],"segmentation.":[42],"Accordingly,":[43,77],"more":[44],"stable":[45,162],"robust":[47,164],"optimization":[48,87,165],"methods":[49],"are":[50,143],"required":[51],"to":[52,102,124],"effectively":[53],"train":[54],"them.":[55],"However,":[56],"traditional":[58],"optimizers":[59],"used":[60],"still":[64],"unsatisfactory":[66],"training":[67,92,168],"for":[69,91],"with":[72],"many":[73],"layers":[74],"weights.":[76],"this":[79],"paper,":[80],"we":[81,173],"propose":[82],"a":[83,127],"new":[84,98],"Adam-based":[85],"hybrid":[86,147],"method":[88,123],"called":[89],"HyAdamC":[90,95,117,152,177],"CNNs":[93],"effectively.":[94],"uses":[96],"three":[97],"velocity":[99],"control":[100],"functions":[101],"adjust":[103],"its":[104],"search":[105,128],"strength":[106],"carefully":[107],"term":[109],"initial,":[111],"short,":[112],"long-term":[114],"velocities.":[115],"Moreover,":[116],"utilizes":[118],"an":[119],"adaptive":[120],"coefficient":[121],"computation":[122],"prevent":[125],"direction":[129],"determined":[130],"by":[131,137],"first":[133],"momentum":[134],"is":[135],"distorted":[136],"any":[138],"outlier":[139],"gradients.":[140],"Then,":[141],"these":[142],"combined":[144],"into":[145,181],"one":[146],"method.":[148],"In":[149],"our":[150],"experiments,":[151],"showed":[153],"not":[154,182],"only":[155,183],"notable":[156],"test":[157],"accuracies":[158],"but":[159],"also":[160,174],"significantly":[161],"abilities":[166],"when":[167],"CNN":[170],"models.":[171],"Furthermore,":[172],"found":[175],"could":[178],"be":[179],"applied":[180],"segmentation":[188],"tasks.":[189]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3168126816","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":14},{"year":2022,"cited_by_count":8},{"year":2021,"cited_by_count":1}],"updated_date":"2025-01-07T22:13:50.842130","created_date":"2021-06-22"}