{"id":"https://openalex.org/W3153454949","doi":"https://doi.org/10.3390/s21082811","title":"An Efficient Anomaly Recognition Framework Using an Attention Residual LSTM in Surveillance Videos","display_name":"An Efficient Anomaly Recognition Framework Using an Attention Residual LSTM in Surveillance Videos","publication_year":2021,"publication_date":"2021-04-16","ids":{"openalex":"https://openalex.org/W3153454949","doi":"https://doi.org/10.3390/s21082811","mag":"3153454949","pmid":"https://pubmed.ncbi.nlm.nih.gov/33923712","pmcid":"https://www.ncbi.nlm.nih.gov/pmc/articles/8072779"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s21082811","pdf_url":"https://www.mdpi.com/1424-8220/21/8/2811/pdf?version=1618913949","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.mdpi.com/1424-8220/21/8/2811/pdf?version=1618913949","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5028503461","display_name":"Waseem Ullah","orcid":"https://orcid.org/0000-0001-5191-9023"},"institutions":[{"id":"https://openalex.org/I28777354","display_name":"Sejong University","ror":"https://ror.org/00aft1q37","country_code":"KR","type":"education","lineage":["https://openalex.org/I28777354"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Waseem Ullah","raw_affiliation_strings":["Sejong University, Seoul 143-747, Korea"],"affiliations":[{"raw_affiliation_string":"Sejong University, Seoul 143-747, Korea","institution_ids":["https://openalex.org/I28777354"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075042717","display_name":"Amin Ullah","orcid":"https://orcid.org/0000-0001-7538-2689"},"institutions":[{"id":"https://openalex.org/I28777354","display_name":"Sejong University","ror":"https://ror.org/00aft1q37","country_code":"KR","type":"education","lineage":["https://openalex.org/I28777354"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Amin Ullah","raw_affiliation_strings":["Sejong University, Seoul 143-747, Korea"],"affiliations":[{"raw_affiliation_string":"Sejong University, Seoul 143-747, Korea","institution_ids":["https://openalex.org/I28777354"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5090689566","display_name":"Tanveer Hussain","orcid":"https://orcid.org/0000-0003-4861-8347"},"institutions":[{"id":"https://openalex.org/I28777354","display_name":"Sejong University","ror":"https://ror.org/00aft1q37","country_code":"KR","type":"education","lineage":["https://openalex.org/I28777354"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Tanveer Hussain","raw_affiliation_strings":["Sejong University, Seoul 143-747, Korea"],"affiliations":[{"raw_affiliation_string":"Sejong University, Seoul 143-747, Korea","institution_ids":["https://openalex.org/I28777354"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101615846","display_name":"Zulfiqar Ahmad Khan","orcid":"https://orcid.org/0000-0003-3797-9649"},"institutions":[{"id":"https://openalex.org/I28777354","display_name":"Sejong University","ror":"https://ror.org/00aft1q37","country_code":"KR","type":"education","lineage":["https://openalex.org/I28777354"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Zulfiqar Ahmad Khan","raw_affiliation_strings":["Sejong University, Seoul 143-747, Korea"],"affiliations":[{"raw_affiliation_string":"Sejong University, Seoul 143-747, Korea","institution_ids":["https://openalex.org/I28777354"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5072407810","display_name":"Sung Wook Baik","orcid":"https://orcid.org/0000-0002-6678-7788"},"institutions":[{"id":"https://openalex.org/I28777354","display_name":"Sejong University","ror":"https://ror.org/00aft1q37","country_code":"KR","type":"education","lineage":["https://openalex.org/I28777354"]}],"countries":["KR"],"is_corresponding":true,"raw_author_name":"Sung Wook Baik","raw_affiliation_strings":["Sejong University, Seoul 143-747, Korea"],"affiliations":[{"raw_affiliation_string":"Sejong University, Seoul 143-747, Korea","institution_ids":["https://openalex.org/I28777354"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5072407810"],"corresponding_institution_ids":["https://openalex.org/I28777354"],"apc_list":{"value":2400,"currency":"CHF","value_usd":2598,"provenance":"doaj"},"apc_paid":{"value":2400,"currency":"CHF","value_usd":2598,"provenance":"doaj"},"fwci":11.98,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":105,"citation_normalized_percentile":{"value":0.999972,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":"21","issue":"8","first_page":"2811","last_page":"2811"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":0.9924,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11819","display_name":"Data-Driven Disease Surveillance","score":0.9798,"subfield":{"id":"https://openalex.org/subfields/2713","display_name":"Epidemiology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.73801976},{"id":"https://openalex.org/keywords/activity-recognition","display_name":"Activity Recognition","score":0.44757372},{"id":"https://openalex.org/keywords/anomaly","display_name":"Anomaly (physics)","score":0.42769665}],"concepts":[{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.7842295},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.776479},{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.767053},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.73801976},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.7350117},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.60740983},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5315582},{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.49838018},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.49835825},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.48484218},{"id":"https://openalex.org/C121687571","wikidata":"https://www.wikidata.org/wiki/Q4677630","display_name":"Activity recognition","level":2,"score":0.44757372},{"id":"https://openalex.org/C12997251","wikidata":"https://www.wikidata.org/wiki/Q567560","display_name":"Anomaly (physics)","level":2,"score":0.42769665},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3785235},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.31264335},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.0},{"id":"https://openalex.org/C26873012","wikidata":"https://www.wikidata.org/wiki/Q214781","display_name":"Condensed matter physics","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0}],"mesh":[],"locations_count":4,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s21082811","pdf_url":"https://www.mdpi.com/1424-8220/21/8/2811/pdf?version=1618913949","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/f9ec23cc74574df5851388bcfccd3b8e","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://eprints.whiterose.ac.uk/193383/6/sensors-21-02811-v2%20%281%29.pdf","pdf_url":"https://eprints.whiterose.ac.uk/193383/6/sensors-21-02811-v2%20%281%29.pdf","source":{"id":"https://openalex.org/S4377196101","display_name":"White Rose Research Online (University of Leeds)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I130828816","host_organization_name":"University of Leeds","host_organization_lineage":["https://openalex.org/I130828816"],"host_organization_lineage_names":["University of Leeds"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072779","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s21082811","pdf_url":"https://www.mdpi.com/1424-8220/21/8/2811/pdf?version=1618913949","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11","score":0.67}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":64,"referenced_works":["https://openalex.org/W1522734439","https://openalex.org/W1595717062","https://openalex.org/W1686810756","https://openalex.org/W1967456674","https://openalex.org/W2012931101","https://openalex.org/W2021659075","https://openalex.org/W2041390734","https://openalex.org/W2064675550","https://openalex.org/W2095640719","https://openalex.org/W2122361470","https://openalex.org/W2124917681","https://openalex.org/W2138092272","https://openalex.org/W2161969291","https://openalex.org/W2163612318","https://openalex.org/W2164261375","https://openalex.org/W2164489414","https://openalex.org/W2194775991","https://openalex.org/W2341058432","https://openalex.org/W2560474170","https://openalex.org/W2572403989","https://openalex.org/W2617670936","https://openalex.org/W2753526808","https://openalex.org/W2758852207","https://openalex.org/W2766042539","https://openalex.org/W2766042998","https://openalex.org/W2777342313","https://openalex.org/W2788738262","https://openalex.org/W2796438033","https://openalex.org/W2807998075","https://openalex.org/W2903380502","https://openalex.org/W2911330197","https://openalex.org/W2913158272","https://openalex.org/W2921491036","https://openalex.org/W2921906393","https://openalex.org/W2931081117","https://openalex.org/W2942779455","https://openalex.org/W2947177749","https://openalex.org/W2947630378","https://openalex.org/W2950773078","https://openalex.org/W2950847611","https://openalex.org/W2955133371","https://openalex.org/W2960737790","https://openalex.org/W2962716148","https://openalex.org/W2963061824","https://openalex.org/W2963163009","https://openalex.org/W2963240734","https://openalex.org/W2963610939","https://openalex.org/W2963795951","https://openalex.org/W2963917928","https://openalex.org/W2981372722","https://openalex.org/W2981586919","https://openalex.org/W2987850001","https://openalex.org/W2997700007","https://openalex.org/W3004784654","https://openalex.org/W3013865762","https://openalex.org/W3015832418","https://openalex.org/W3018665999","https://openalex.org/W3019417342","https://openalex.org/W3077420696","https://openalex.org/W3089599897","https://openalex.org/W3090885652","https://openalex.org/W3101466234","https://openalex.org/W3114369269","https://openalex.org/W4250313873"],"related_works":["https://openalex.org/W4391094981","https://openalex.org/W4300558037","https://openalex.org/W4290647774","https://openalex.org/W3210364259","https://openalex.org/W3207797160","https://openalex.org/W3189286258","https://openalex.org/W2912112202","https://openalex.org/W2806741695","https://openalex.org/W2790400419","https://openalex.org/W2667207928"],"abstract_inverted_index":{"Video":[0],"anomaly":[1,73,139],"recognition":[2,74],"in":[3,17,34,60,79,117,129,148,188],"smart":[4,18,149],"cities":[5,150],"is":[6,24,77],"an":[7,66],"important":[8],"computer":[9],"vision":[10],"task":[11],"that":[12,76,174],"plays":[13],"a":[14,80,93,182],"vital":[15],"role":[16],"surveillance":[19,36,81,118,170],"and":[20,31,51,98,141,172,185,194],"public":[21],"safety":[22],"but":[23],"challenging":[25],"due":[26],"to":[27,101,135],"its":[28],"diverse,":[29],"complex,":[30],"infrequent":[32],"occurrence":[33],"real-time":[35],"environments.":[37],"Various":[38],"deep":[39],"learning":[40,133],"models":[41,180],"use":[42],"significant":[43],"amounts":[44],"of":[45,95,164],"training":[46],"data":[47],"without":[48],"generalization":[49],"abilities":[50],"with":[52,83,124,181],"huge":[53],"time":[54,85],"complexity.":[55,86],"To":[56],"overcome":[57],"these":[58],"problems,":[59],"the":[61,102,125,156,162,165,191],"current":[62],"work,":[63],"we":[64],"present":[65],"efficient":[67],"light-weight":[68],"convolutional":[69],"neural":[70],"network":[71],"(CNN)-based":[72],"framework":[75],"functional":[78],"environment":[82],"reduced":[84],"We":[87],"extract":[88],"spatial":[89],"CNN":[90,122],"features":[91,123],"from":[92],"series":[94],"video":[96,151],"frames":[97],"feed":[99],"them":[100],"proposed":[103,166,176],"residual":[104,126],"attention-based":[105],"long":[106],"short-term":[107],"memory":[108],"(LSTM)":[109],"network,":[110],"which":[111],"can":[112],"precisely":[113],"recognize":[114],"anomalous":[115],"activity":[116],"videos.":[119],"The":[120],"representative":[121],"blocks":[127],"concept":[128],"LSTM":[130],"for":[131,138],"sequence":[132],"prove":[134],"be":[136],"effective":[137,146],"detection":[140],"recognition,":[142],"validating":[143],"our":[144,175],"model\u2019s":[145],"usage":[147],"surveillance.":[152],"Extensive":[153],"experiments":[154],"on":[155,190],"real-world":[157],"benchmark":[158],"UCF-Crime":[159],"dataset":[160],"validate":[161],"effectiveness":[163],"model":[167,177],"within":[168],"complex":[169],"environments":[171],"demonstrate":[173],"outperforms":[178],"state-of-the-art":[179],"1.77%,":[183],"0.76%,":[184],"8.62%":[186],"increase":[187],"accuracy":[189],"UCF-Crime,":[192],"UMN":[193],"Avenue":[195],"datasets,":[196],"respectively.":[197]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3153454949","counts_by_year":[{"year":2024,"cited_by_count":24},{"year":2023,"cited_by_count":43},{"year":2022,"cited_by_count":32},{"year":2021,"cited_by_count":4}],"updated_date":"2024-12-08T16:19:43.771541","created_date":"2021-04-26"}