{"id":"https://openalex.org/W3036262803","doi":"https://doi.org/10.3390/s20123491","title":"Spatio-Temporal Representation of an Electoencephalogram for Emotion Recognition Using a Three-Dimensional Convolutional Neural Network","display_name":"Spatio-Temporal Representation of an Electoencephalogram for Emotion Recognition Using a Three-Dimensional Convolutional Neural Network","publication_year":2020,"publication_date":"2020-06-20","ids":{"openalex":"https://openalex.org/W3036262803","doi":"https://doi.org/10.3390/s20123491","mag":"3036262803","pmid":"https://pubmed.ncbi.nlm.nih.gov/32575708","pmcid":"https://www.ncbi.nlm.nih.gov/pmc/articles/7349167"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s20123491","pdf_url":"https://www.mdpi.com/1424-8220/20/12/3491/pdf?version=1592636472","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.mdpi.com/1424-8220/20/12/3491/pdf?version=1592636472","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5021065462","display_name":"Jungchan Cho","orcid":"https://orcid.org/0000-0002-3859-1702"},"institutions":[{"id":"https://openalex.org/I12832649","display_name":"Gachon University","ror":"https://ror.org/03ryywt80","country_code":"KR","type":"education","lineage":["https://openalex.org/I12832649"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Jungchan Cho","raw_affiliation_strings":["Department of Software, Gachon University, Seongnam 1342, Korea"],"affiliations":[{"raw_affiliation_string":"Department of Software, Gachon University, Seongnam 1342, Korea","institution_ids":["https://openalex.org/I12832649"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5018395387","display_name":"Hyoseok Hwang","orcid":"https://orcid.org/0000-0003-3241-8455"},"institutions":[{"id":"https://openalex.org/I12832649","display_name":"Gachon University","ror":"https://ror.org/03ryywt80","country_code":"KR","type":"education","lineage":["https://openalex.org/I12832649"]}],"countries":["KR"],"is_corresponding":true,"raw_author_name":"Hyoseok Hwang","raw_affiliation_strings":["Department of Software, Gachon University, Seongnam 1342, Korea"],"affiliations":[{"raw_affiliation_string":"Department of Software, Gachon University, Seongnam 1342, Korea","institution_ids":["https://openalex.org/I12832649"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5018395387"],"corresponding_institution_ids":["https://openalex.org/I12832649"],"apc_list":{"value":2400,"currency":"CHF","value_usd":2598,"provenance":"doaj"},"apc_paid":{"value":2400,"currency":"CHF","value_usd":2598,"provenance":"doaj"},"fwci":4.12,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":46,"citation_normalized_percentile":{"value":0.999931,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":"20","issue":"12","first_page":"3491","last_page":"3491"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10667","display_name":"Emotion and Mood Recognition","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/3205","display_name":"Experimental and Cognitive Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11707","display_name":"Gaze Tracking and Assistive Technology","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/1709","display_name":"Human-Computer Interaction"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.48280084}],"concepts":[{"id":"https://openalex.org/C522805319","wikidata":"https://www.wikidata.org/wiki/Q179965","display_name":"Electroencephalography","level":2,"score":0.75771904},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7391827},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.712039},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.70505214},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.7008848},{"id":"https://openalex.org/C206310091","wikidata":"https://www.wikidata.org/wiki/Q750859","display_name":"Emotion classification","level":2,"score":0.53824663},{"id":"https://openalex.org/C2777438025","wikidata":"https://www.wikidata.org/wiki/Q1339090","display_name":"Emotion recognition","level":2,"score":0.5119194},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.48280084},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.45381045},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.39900708},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0722501},{"id":"https://openalex.org/C118552586","wikidata":"https://www.wikidata.org/wiki/Q7867","display_name":"Psychiatry","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[],"locations_count":4,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s20123491","pdf_url":"https://www.mdpi.com/1424-8220/20/12/3491/pdf?version=1592636472","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/338e55e142c94b0a8ce3dc60a0fcf387","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://europepmc.org/articles/pmc7349167","pdf_url":"https://europepmc.org/articles/pmc7349167?pdf=render","source":{"id":"https://openalex.org/S4306400806","display_name":"Europe PMC (PubMed Central)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1303153112","host_organization_name":"European Bioinformatics Institute","host_organization_lineage":["https://openalex.org/I1303153112"],"host_organization_lineage_names":["European Bioinformatics Institute"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349167","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s20123491","pdf_url":"https://www.mdpi.com/1424-8220/20/12/3491/pdf?version=1592636472","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.4,"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities"}],"grants":[{"funder":"https://openalex.org/F4320322120","funder_display_name":"National Research Foundation of Korea","award_id":"2019R1F1A1057984"}],"datasets":[],"versions":[],"referenced_works_count":49,"referenced_works":["https://openalex.org/W1522734439","https://openalex.org/W1947251450","https://openalex.org/W1967850804","https://openalex.org/W1970727126","https://openalex.org/W2002055708","https://openalex.org/W2016053056","https://openalex.org/W2037121244","https://openalex.org/W2049146462","https://openalex.org/W2064770205","https://openalex.org/W2081420711","https://openalex.org/W2108598243","https://openalex.org/W2119622871","https://openalex.org/W2139564752","https://openalex.org/W2165857685","https://openalex.org/W2168056503","https://openalex.org/W2235034809","https://openalex.org/W2274287116","https://openalex.org/W2308045930","https://openalex.org/W2514240795","https://openalex.org/W2556247010","https://openalex.org/W2572280252","https://openalex.org/W2749037581","https://openalex.org/W2761266324","https://openalex.org/W2761659801","https://openalex.org/W2765856398","https://openalex.org/W2778812440","https://openalex.org/W2783914690","https://openalex.org/W2792523725","https://openalex.org/W2800893827","https://openalex.org/W2886286739","https://openalex.org/W2889782437","https://openalex.org/W2896297654","https://openalex.org/W2901337091","https://openalex.org/W2932154953","https://openalex.org/W2934123712","https://openalex.org/W2944401411","https://openalex.org/W2952286992","https://openalex.org/W2962934715","https://openalex.org/W2963155035","https://openalex.org/W2963355311","https://openalex.org/W2963820951","https://openalex.org/W2964018249","https://openalex.org/W2964350391","https://openalex.org/W2979225039","https://openalex.org/W2982299617","https://openalex.org/W2989750058","https://openalex.org/W3009120439","https://openalex.org/W3014215018","https://openalex.org/W4206774691"],"related_works":["https://openalex.org/W4386232293","https://openalex.org/W4380854332","https://openalex.org/W4379781104","https://openalex.org/W4305042383","https://openalex.org/W3003834951","https://openalex.org/W2546649374","https://openalex.org/W2382178633","https://openalex.org/W2184859701","https://openalex.org/W2032664813","https://openalex.org/W1550318927"],"abstract_inverted_index":{"Emotion":[0,203],"recognition":[1,39,49],"plays":[2],"an":[3,35,88,102,280,284],"important":[4],"role":[5],"in":[6,45,54,228,237],"the":[7,67,92,106,135,148,153,160,184,187,191,198,216,229,243,247,265,271,294],"field":[8,56],"of":[9,47,69,94,105,109,122,159,186,190,223,232,246,256,269,283,293],"human\u2013computer":[10],"interaction":[11],"(HCI).":[12],"An":[13],"electroencephalogram":[14],"(EEG)":[15],"is":[16],"widely":[17],"used":[18],"to":[19,24,72,128,134,152,253],"estimate":[20],"human":[21],"emotion":[22,38,89],"owing":[23],"its":[25],"convenience":[26],"and":[27,208,226,234,273,286],"mobility.":[28],"Deep":[29],"neural":[30,97],"network":[31,288],"(DNN)":[32],"approaches":[33],"using":[34,205],"EEG":[36,110,117,131,144,150,162,285],"for":[37,62,86,202],"have":[40,172],"recently":[41],"shown":[42,173],"remarkable":[43,175],"improvement":[44],"terms":[46],"their":[48],"accuracy.":[50],"However,":[51],"most":[52],"studies":[53],"this":[55,79],"still":[57],"require":[58],"a":[59,70,83,142,174,220,287],"separate":[60],"process":[61],"extracting":[63],"handcrafted":[64,302],"features":[65,75],"despite":[66],"ability":[68],"DNN":[71],"extract":[73],"meaningful":[74],"by":[76,146,250],"itself.":[77],"In":[78],"paper,":[80],"we":[81,113,182],"propose":[82],"novel":[84],"method":[85,193,218,249],"recognizing":[87],"based":[90],"on":[91,197],"use":[93],"three-dimensional":[95],"convolutional":[96],"networks":[98],"(3D":[99],"CNNs),":[100],"with":[101,168,259],"efficient":[103,281],"representation":[104,177,282],"spatio-temporal":[107,179,244],"representations":[108],"signals.":[111],"First,":[112],"spatially":[114],"reconstruct":[115],"raw":[116,161],"signals":[118,163],"represented":[119],"as":[120],"stacks":[121],"one-dimensional":[123],"(1D)":[124],"time":[125,154],"series":[126],"data":[127,275,295],"two-dimensional":[129],"(2D)":[130],"frames":[132,151],"according":[133],"original":[136],"electrode":[137],"position.":[138],"We":[139,241,262,277],"then":[140,263],"represent":[141],"3D":[143,157,169],"stream":[145],"concatenating":[147],"2D":[149],"axis.":[155],"These":[156],"reconstructions":[158],"can":[164,297],"be":[165],"efficiently":[166],"combined":[167],"CNNs,":[170],"which":[171],"feature":[176],"from":[178],"data.":[180],"Herein,":[181],"demonstrate":[183],"accuracy":[185,222],"emotional":[188],"classification":[189,221,231],"proposed":[192,217,248],"through":[194],"extensive":[195],"experiments":[196],"DEAP":[199],"(a":[200],"Dataset":[201],"Analysis":[204],"EEG,":[206],"Physiological,":[207],"video":[209],"signals)":[210],"dataset.":[211],"Experimental":[212],"results":[213],"show":[214],"that":[215,279,289,300],"achieves":[219],"99.11%,":[224],"99.74%,":[225],"99.73%":[227],"binary":[230],"valence":[233],"arousal,":[235],"and,":[236],"four-class":[238],"classification,":[239],"respectively.":[240],"investigate":[242],"effectiveness":[245],"comparing":[251],"it":[252],"several":[254],"types":[255],"input":[257,274],"methods":[258,299],"2D/3D":[260],"CNN.":[261],"verify":[264,278],"best":[266],"performing":[267],"shape":[268],"both":[270],"kernel":[272],"experimentally.":[276],"fully":[290],"takes":[291],"advantage":[292],"characteristics":[296],"outperform":[298],"apply":[301],"features.":[303]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3036262803","counts_by_year":[{"year":2024,"cited_by_count":6},{"year":2023,"cited_by_count":18},{"year":2022,"cited_by_count":10},{"year":2021,"cited_by_count":11},{"year":2020,"cited_by_count":1}],"updated_date":"2024-12-08T16:16:18.968192","created_date":"2020-06-25"}