{"id":"https://openalex.org/W4392380908","doi":"https://doi.org/10.3390/rs16050905","title":"A Machine-Learning-Based Framework for Retrieving Water Quality Parameters in Urban Rivers Using UAV Hyperspectral Images","display_name":"A Machine-Learning-Based Framework for Retrieving Water Quality Parameters in Urban Rivers Using UAV Hyperspectral Images","publication_year":2024,"publication_date":"2024-03-04","ids":{"openalex":"https://openalex.org/W4392380908","doi":"https://doi.org/10.3390/rs16050905"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/rs16050905","pdf_url":"https://www.mdpi.com/2072-4292/16/5/905/pdf?version=1709550297","source":{"id":"https://openalex.org/S43295729","display_name":"Remote Sensing","issn_l":"2072-4292","issn":["2072-4292"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.mdpi.com/2072-4292/16/5/905/pdf?version=1709550297","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101721757","display_name":"Liu Bing","orcid":"https://orcid.org/0000-0003-3833-9790"},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"funder","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Bing Liu","raw_affiliation_strings":["Center for Habitable Intelligent Planet, Institute of Artificial Intelligence, Peking University, Beijing 100871, China","State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China"],"affiliations":[{"raw_affiliation_string":"Center for Habitable Intelligent Planet, Institute of Artificial Intelligence, Peking University, Beijing 100871, China","institution_ids":["https://openalex.org/I20231570"]},{"raw_affiliation_string":"State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China","institution_ids":["https://openalex.org/I20231570"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101928475","display_name":"Tianhong Li","orcid":"https://orcid.org/0000-0001-6280-6411"},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"funder","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Tianhong Li","raw_affiliation_strings":["Center for Habitable Intelligent Planet, Institute of Artificial Intelligence, Peking University, Beijing 100871, China","State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China"],"affiliations":[{"raw_affiliation_string":"State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China","institution_ids":["https://openalex.org/I20231570"]},{"raw_affiliation_string":"Center for Habitable Intelligent Planet, Institute of Artificial Intelligence, Peking University, Beijing 100871, China","institution_ids":["https://openalex.org/I20231570"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5101928475"],"corresponding_institution_ids":["https://openalex.org/I20231570"],"apc_list":{"value":2500,"currency":"CHF","value_usd":2707},"apc_paid":{"value":2500,"currency":"CHF","value_usd":2707},"fwci":4.75,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":8,"citation_normalized_percentile":{"value":0.999922,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":"16","issue":"5","first_page":"905","last_page":"905"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12697","display_name":"Water Quality Monitoring Technologies","score":0.993,"subfield":{"id":"https://openalex.org/subfields/2312","display_name":"Water Science and Technology"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12697","display_name":"Water Quality Monitoring Technologies","score":0.993,"subfield":{"id":"https://openalex.org/subfields/2312","display_name":"Water Science and Technology"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T14249","display_name":"Water Quality Monitoring and Analysis","score":0.9856,"subfield":{"id":"https://openalex.org/subfields/2311","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9843,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C159078339","wikidata":"https://www.wikidata.org/wiki/Q959005","display_name":"Hyperspectral imaging","level":2,"score":0.8159771},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.53745747},{"id":"https://openalex.org/C62649853","wikidata":"https://www.wikidata.org/wiki/Q199687","display_name":"Remote sensing","level":1,"score":0.4841257},{"id":"https://openalex.org/C2779530757","wikidata":"https://www.wikidata.org/wiki/Q1207505","display_name":"Quality (philosophy)","level":2,"score":0.4313767},{"id":"https://openalex.org/C39432304","wikidata":"https://www.wikidata.org/wiki/Q188847","display_name":"Environmental science","level":0,"score":0.4251481},{"id":"https://openalex.org/C2780797713","wikidata":"https://www.wikidata.org/wiki/Q625376","display_name":"Water quality","level":2,"score":0.41428155},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.37335134},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.1562455},{"id":"https://openalex.org/C18903297","wikidata":"https://www.wikidata.org/wiki/Q7150","display_name":"Ecology","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/rs16050905","pdf_url":"https://www.mdpi.com/2072-4292/16/5/905/pdf?version=1709550297","source":{"id":"https://openalex.org/S43295729","display_name":"Remote Sensing","issn_l":"2072-4292","issn":["2072-4292"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/rs16050905","pdf_url":"https://www.mdpi.com/2072-4292/16/5/905/pdf?version=1709550297","source":{"id":"https://openalex.org/S43295729","display_name":"Remote Sensing","issn_l":"2072-4292","issn":["2072-4292"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/6","display_name":"Clean water and sanitation","score":0.64}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":56,"referenced_works":["https://openalex.org/W1981841469","https://openalex.org/W2023570227","https://openalex.org/W2043550998","https://openalex.org/W2100719695","https://openalex.org/W2101234009","https://openalex.org/W2793272303","https://openalex.org/W2883715112","https://openalex.org/W2895277873","https://openalex.org/W2899025841","https://openalex.org/W2948236978","https://openalex.org/W2964278775","https://openalex.org/W2981334603","https://openalex.org/W2997305502","https://openalex.org/W3004381221","https://openalex.org/W3024768525","https://openalex.org/W3037968153","https://openalex.org/W3049103587","https://openalex.org/W3084183823","https://openalex.org/W3085264526","https://openalex.org/W3111262021","https://openalex.org/W3127053039","https://openalex.org/W3128201290","https://openalex.org/W3128829940","https://openalex.org/W3166273387","https://openalex.org/W3169898725","https://openalex.org/W3198277192","https://openalex.org/W3205104486","https://openalex.org/W3211636833","https://openalex.org/W3214198969","https://openalex.org/W3214200389","https://openalex.org/W4200098814","https://openalex.org/W4205914679","https://openalex.org/W4206801185","https://openalex.org/W4221134619","https://openalex.org/W4223655275","https://openalex.org/W4229080700","https://openalex.org/W4284894552","https://openalex.org/W4290613684","https://openalex.org/W4292548578","https://openalex.org/W4292672315","https://openalex.org/W4293116366","https://openalex.org/W4294031695","https://openalex.org/W4296826608","https://openalex.org/W4302028277","https://openalex.org/W4307965857","https://openalex.org/W4308157833","https://openalex.org/W4311457728","https://openalex.org/W4313334358","https://openalex.org/W4316465968","https://openalex.org/W4322503835","https://openalex.org/W4360980816","https://openalex.org/W4362583630","https://openalex.org/W4379966198","https://openalex.org/W4380224408","https://openalex.org/W4389252531","https://openalex.org/W4389749374"],"related_works":["https://openalex.org/W4250051149","https://openalex.org/W4230131218","https://openalex.org/W3209970181","https://openalex.org/W3034375524","https://openalex.org/W2385371209","https://openalex.org/W2083270190","https://openalex.org/W2072166414","https://openalex.org/W2070598848","https://openalex.org/W2060875994","https://openalex.org/W1991437568"],"abstract_inverted_index":{"Efficient":[0],"monitoring":[1,212],"of":[2,25,136,182],"water":[3,210],"quality":[4,211],"parameters":[5],"(WQPs)":[6],"is":[7],"crucial":[8],"for":[9,19,34,105,160,171,186,195],"environmental":[10],"health.":[11],"Drone":[12],"hyperspectral":[13,207],"images":[14],"have":[15,153],"offered":[16],"the":[17,20,52,110,154,157,161,172,180],"potential":[18,88,155],"flexible":[21],"and":[22,65,78,119,130,143,165,202,213],"accurate":[23],"retrieval":[24],"WQPs.":[26],"However,":[27],"a":[28,43,58],"machine":[29,59],"learning":[30],"(ML)-based":[31],"multi-process":[32],"strategy":[33,61],"WQP":[35,72,196],"inversion":[36,197],"has":[37],"yet":[38],"to":[39,86,96,152],"be":[40],"established.":[41],"Taking":[42],"typical":[44],"urban":[45,216],"river":[46],"in":[47,215],"Guangzhou":[48],"city,":[49],"China,":[50],"as":[51],"study":[53,190],"area,":[54],"this":[55],"paper":[56],"proposes":[57],"learning-based":[60],"combining":[62],"spectral":[63,89],"preprocessing":[64],"ML":[66],"regression":[67,148],"models":[68],"with":[69,133,156],"ground":[70],"truth":[71],"data.":[73],"Fractional":[74],"order":[75],"derivation":[76],"(FOD)":[77],"discrete":[79],"wavelet":[80],"transform":[81],"(DWT)":[82],"methods":[83,93,178],"were":[84,94,103,126],"used":[85],"explore":[87],"information.":[90],"Then,":[91],"multiple":[92],"applied":[95],"select":[97],"sensitive":[98],"features.":[99],"Three":[100],"modeling":[101],"strategies":[102,185],"constructed":[104],"retrieving":[106],"four":[107],"WQPs,":[108,164],"including":[109],"Secchi":[111],"depth":[112],"(SD),":[113],"turbidity":[114],"(TUB),":[115],"total":[116],"phosphorus":[117],"(TP),":[118],"permanganate":[120],"index":[121],"(CODMn).":[122],"The":[123],"highest":[124],"R2s":[125],"0.68,":[127],"0.90,":[128],"0.70,":[129],"0.96,":[131],"respectively,":[132],"corresponding":[134],"RMSEs":[135],"13.73":[137],"cm,":[138],"6.50":[139],"NTU,":[140],"0.06":[141],"mg/L,":[142],"0.20":[144],"mg/L.":[145],"Decision":[146],"tree":[147],"(DTR)":[149],"was":[150],"found":[151],"best":[158],"performance":[159],"first":[162],"three":[163],"eXtreme":[166],"Gradient":[167],"Boosting":[168],"Regression":[169],"(XGBR)":[170],"CODMn.":[173],"Moreover,":[174],"tailored":[175],"feature":[176],"selection":[177],"emphasize":[179],"importance":[181],"fitting":[183],"processing":[184],"specific":[187],"parameters.":[188],"This":[189],"provides":[191],"an":[192],"effective":[193],"framework":[194],"that":[198],"combines":[199],"spectra":[200],"mining":[201],"extraction":[203],"based":[204],"on":[205],"drone":[206],"images,":[208],"supporting":[209],"management":[214],"rivers.":[217]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4392380908","counts_by_year":[{"year":2025,"cited_by_count":2},{"year":2024,"cited_by_count":6}],"updated_date":"2025-03-22T03:30:42.722830","created_date":"2024-03-05"}