{"id":"https://openalex.org/W4321242111","doi":"https://doi.org/10.3390/rs15041086","title":"Tree Segmentation and Parameter Measurement from Point Clouds Using Deep and Handcrafted Features","display_name":"Tree Segmentation and Parameter Measurement from Point Clouds Using Deep and Handcrafted Features","publication_year":2023,"publication_date":"2023-02-16","ids":{"openalex":"https://openalex.org/W4321242111","doi":"https://doi.org/10.3390/rs15041086"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/rs15041086","pdf_url":"https://www.mdpi.com/2072-4292/15/4/1086/pdf?version=1676544027","source":{"id":"https://openalex.org/S43295729","display_name":"Remote Sensing","issn_l":"2072-4292","issn":["2072-4292"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.mdpi.com/2072-4292/15/4/1086/pdf?version=1676544027","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5046698604","display_name":"Feiyu Wang","orcid":"https://orcid.org/0000-0002-5491-4954"},"institutions":[{"id":"https://openalex.org/I4210127558","display_name":"Australian Centre for Robotic Vision","ror":"https://ror.org/02zv9xv82","country_code":"AU","type":"facility","lineage":["https://openalex.org/I4210127558"]},{"id":"https://openalex.org/I129604602","display_name":"University of Sydney","ror":"https://ror.org/0384j8v12","country_code":"AU","type":"education","lineage":["https://openalex.org/I129604602"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Feiyu Wang","raw_affiliation_strings":["Australian Centre for Field Robotics, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia"],"affiliations":[{"raw_affiliation_string":"Australian Centre for Field Robotics, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia","institution_ids":["https://openalex.org/I4210127558","https://openalex.org/I129604602"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5050331911","display_name":"Mitch Bryson","orcid":"https://orcid.org/0000-0001-8784-6970"},"institutions":[{"id":"https://openalex.org/I4210127558","display_name":"Australian Centre for Robotic Vision","ror":"https://ror.org/02zv9xv82","country_code":"AU","type":"facility","lineage":["https://openalex.org/I4210127558"]},{"id":"https://openalex.org/I129604602","display_name":"University of Sydney","ror":"https://ror.org/0384j8v12","country_code":"AU","type":"education","lineage":["https://openalex.org/I129604602"]}],"countries":["AU"],"is_corresponding":true,"raw_author_name":"Mitch Bryson","raw_affiliation_strings":["Australian Centre for Field Robotics, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia"],"affiliations":[{"raw_affiliation_string":"Australian Centre for Field Robotics, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia","institution_ids":["https://openalex.org/I4210127558","https://openalex.org/I129604602"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5050331911"],"corresponding_institution_ids":["https://openalex.org/I4210127558","https://openalex.org/I129604602"],"apc_list":{"value":2500,"currency":"CHF","value_usd":2707,"provenance":"doaj"},"apc_paid":{"value":2500,"currency":"CHF","value_usd":2707,"provenance":"doaj"},"fwci":2.2,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":10,"citation_normalized_percentile":{"value":0.999895,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":"15","issue":"4","first_page":"1086","last_page":"1086"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11164","display_name":"Remote Sensing and LiDAR Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11164","display_name":"Remote Sensing and LiDAR Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11211","display_name":"3D Surveying and Cultural Heritage","score":0.9958,"subfield":{"id":"https://openalex.org/subfields/1907","display_name":"Geology"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11880","display_name":"Forest ecology and management","score":0.9943,"subfield":{"id":"https://openalex.org/subfields/2309","display_name":"Nature and Landscape Conservation"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.58221525},{"id":"https://openalex.org/keywords/tree","display_name":"Tree (set theory)","score":0.53885525},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.4717116}],"concepts":[{"id":"https://openalex.org/C131979681","wikidata":"https://www.wikidata.org/wiki/Q1899648","display_name":"Point cloud","level":2,"score":0.87747437},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8154457},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.66363037},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.59454346},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.58221525},{"id":"https://openalex.org/C113174947","wikidata":"https://www.wikidata.org/wiki/Q2859736","display_name":"Tree (set theory)","level":2,"score":0.53885525},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.53560114},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.52392036},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.4717116},{"id":"https://openalex.org/C51399673","wikidata":"https://www.wikidata.org/wiki/Q504027","display_name":"Lidar","level":2,"score":0.45284617},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.39275277},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.32054934},{"id":"https://openalex.org/C62649853","wikidata":"https://www.wikidata.org/wiki/Q199687","display_name":"Remote sensing","level":1,"score":0.31626987},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/rs15041086","pdf_url":"https://www.mdpi.com/2072-4292/15/4/1086/pdf?version=1676544027","source":{"id":"https://openalex.org/S43295729","display_name":"Remote Sensing","issn_l":"2072-4292","issn":["2072-4292"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/rs15041086","pdf_url":"https://www.mdpi.com/2072-4292/15/4/1086/pdf?version=1676544027","source":{"id":"https://openalex.org/S43295729","display_name":"Remote Sensing","issn_l":"2072-4292","issn":["2072-4292"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Life on land","score":0.68,"id":"https://metadata.un.org/sdg/15"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":58,"referenced_works":["https://openalex.org/W1567302070","https://openalex.org/W1677409904","https://openalex.org/W1903029394","https://openalex.org/W1938542669","https://openalex.org/W1970991873","https://openalex.org/W1980089263","https://openalex.org/W2028290485","https://openalex.org/W2048679005","https://openalex.org/W2064675550","https://openalex.org/W2071215415","https://openalex.org/W2080105829","https://openalex.org/W2113748593","https://openalex.org/W2122920344","https://openalex.org/W2151103935","https://openalex.org/W2161746820","https://openalex.org/W2556802233","https://openalex.org/W2621367454","https://openalex.org/W2793888044","https://openalex.org/W2798777114","https://openalex.org/W2798991696","https://openalex.org/W2799056151","https://openalex.org/W2895771689","https://openalex.org/W2906346878","https://openalex.org/W2949708697","https://openalex.org/W2955547856","https://openalex.org/W2962912109","https://openalex.org/W2963125977","https://openalex.org/W2963281829","https://openalex.org/W2963509914","https://openalex.org/W2963625095","https://openalex.org/W2964062501","https://openalex.org/W2964159205","https://openalex.org/W2968557240","https://openalex.org/W2971726345","https://openalex.org/W2979750740","https://openalex.org/W2995101791","https://openalex.org/W3003868913","https://openalex.org/W3021818817","https://openalex.org/W3034482224","https://openalex.org/W3034562924","https://openalex.org/W3039448353","https://openalex.org/W3086105597","https://openalex.org/W3119635706","https://openalex.org/W3148599316","https://openalex.org/W3149497396","https://openalex.org/W3153635465","https://openalex.org/W3179527434","https://openalex.org/W3180562345","https://openalex.org/W3198731913","https://openalex.org/W3202349074","https://openalex.org/W3209458476","https://openalex.org/W3216963956","https://openalex.org/W3217350158","https://openalex.org/W4207008904","https://openalex.org/W4210478945","https://openalex.org/W4290755532","https://openalex.org/W4290755983","https://openalex.org/W4292451802"],"related_works":["https://openalex.org/W4319837668","https://openalex.org/W4319317934","https://openalex.org/W4308071650","https://openalex.org/W4293094720","https://openalex.org/W4287694812","https://openalex.org/W3128716822","https://openalex.org/W3046762217","https://openalex.org/W2956374172","https://openalex.org/W2901265155","https://openalex.org/W2739701376"],"abstract_inverted_index":{"Accurate":[0],"measurement":[1],"of":[2,6,12,39,54,211,240,276,300],"the":[3,73,208,228,250,265,287,296,307,336],"geometric":[4,209],"parameters":[5,210],"trees":[7,119],"is":[8,121],"a":[9,107,140,150,176,194,216,224,231,241],"vital":[10],"part":[11],"forest":[13,31,40,91],"inventory":[14,32],"in":[15,30,69,99,102,117,155,223],"forestry":[16],"management.":[17],"Aerial":[18],"and":[19,23,36,48,72,80,120,178,257,267,283,303,306,318,321,350],"terrestrial":[20,284],"Light":[21],"Detection":[22],"Ranging":[24],"(LiDAR)":[25],"sensors":[26],"are":[27,130],"currently":[28],"used":[29],"as":[33,60],"an":[34],"effective":[35],"efficient":[37],"means":[38],"data":[41,51,79,129,188],"collection.":[42],"Many":[43],"recent":[44],"approaches":[45,88],"to":[46,66,75,77,89,123,166,182,254,346],"processing":[47],"interpreting":[49],"this":[50,83,173,247],"make":[52],"use":[53,239,272],"supervised":[55,195],"machine":[56,196],"learning":[57,197,244,323],"algorithms":[58],"such":[59],"Deep":[61],"Neural":[62,202],"Networks":[63,203],"(DNNs)":[64],"due":[65],"their":[67],"advantages":[68],"accuracy,":[70],"robustness":[71],"ability":[74],"adapt":[76],"new":[78,87,255,353],"environments.":[81],"In":[82],"paper,":[84],"we":[85,105,138,171,192,271,290],"develop":[86,106,193],"deep-learning-based":[90],"point":[92,108,134,142,186,221,315],"cloud":[93,109,135,143,187,316],"analysis":[94],"that":[95,112,205,311],"address":[96],"key":[97],"issues":[98],"real":[100],"applications":[101],"forests.":[103],"Firstly,":[104],"segmentation":[110,147,168,266,288,329],"framework":[111,198,324],"identifies":[113],"tree":[114,213,278,328,337,357],"stem":[115],"points":[116],"individual":[118,212],"designed":[122],"improve":[124,133,167,327],"performance":[125,330],"when":[126],"labelled":[127],"training":[128,180],"limited.":[131],"To":[132,259],"representation":[136],"learning,":[137,305],"propose":[139],"handcrafted":[141,159,314],"feature":[144,160,174,317],"for":[145,230,234,246,263,355],"semantic":[146],"which":[148],"plays":[149],"complementary":[151],"role":[152],"with":[153,164,175],"DNNs":[154,165],"semantics":[156],"extraction.":[157],"Our":[158],"can":[161,325],"be":[162],"integrated":[163],"performance.":[169],"Additionally,":[170],"combine":[172],"semi-supervised":[177,320],"cross-dataset":[179,304,322],"process":[181,251],"effectively":[183],"leverage":[184],"unlabelled":[185],"during":[189],"training.":[190],"Secondly,":[191],"based":[199],"on":[200,236,295],"Recurrent":[201],"(RNNs)":[204],"directly":[206],"estimates":[207],"stems":[214],"(via":[215],"stacked":[217],"cylinder":[218],"model)":[219],"from":[220],"clouds":[222],"data-driven":[225],"process,":[226],"without":[227],"need":[229],"separate":[232],"procedure":[233],"model-fitting":[235],"points.":[237],"The":[238],"one-stage":[242],"deep":[243],"algorithm":[245],"task":[248],"makes":[249],"easily":[252],"adaptable":[253],"environments":[256],"datasets.":[258],"evaluate":[260,292],"our":[261,293,313,319,341],"methods":[262,349],"both":[264,312],"parameter":[268,338,358],"estimation":[269,339],"tasks,":[270],"four":[273],"real-world":[274],"datasets":[275],"different":[277,298],"species":[279],"collected":[280],"using":[281],"aerial":[282],"LiDAR.":[285],"For":[286,335],"task,":[289,340],"extensively":[291],"method":[294,343],"three":[297,333],"settings":[299],"supervised,":[301],"semi-supervised,":[302],"experimental":[308],"results":[309],"indicate":[310],"significantly":[326],"under":[331],"all":[332],"settings.":[334],"DNN-based":[342,356],"performs":[344],"comparably":[345],"well-established":[347],"traditional":[348],"opens":[351],"up":[352],"avenues":[354],"estimation.":[359]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4321242111","counts_by_year":[{"year":2024,"cited_by_count":7},{"year":2023,"cited_by_count":3}],"updated_date":"2024-12-30T21:00:42.096233","created_date":"2023-02-18"}