{"id":"https://openalex.org/W3189505573","doi":"https://doi.org/10.3390/make4020017","title":"Missing Data Estimation in Temporal Multilayer Position-Aware Graph Neural Network (TMP-GNN)","display_name":"Missing Data Estimation in Temporal Multilayer Position-Aware Graph Neural Network (TMP-GNN)","publication_year":2022,"publication_date":"2022-04-30","ids":{"openalex":"https://openalex.org/W3189505573","doi":"https://doi.org/10.3390/make4020017","mag":"3189505573"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/make4020017","pdf_url":"https://www.mdpi.com/2504-4990/4/2/17/pdf?version=1652258902","source":{"id":"https://openalex.org/S4210213891","display_name":"Machine Learning and Knowledge Extraction","issn_l":"2504-4990","issn":["2504-4990"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["arxiv","crossref","datacite","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.mdpi.com/2504-4990/4/2/17/pdf?version=1652258902","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5072066922","display_name":"Bahareh Najafi","orcid":"https://orcid.org/0000-0002-1030-592X"},"institutions":[{"id":"https://openalex.org/I185261750","display_name":"University of Toronto","ror":"https://ror.org/03dbr7087","country_code":"CA","type":"education","lineage":["https://openalex.org/I185261750"]}],"countries":["CA"],"is_corresponding":true,"raw_author_name":"Bahareh Najafi","raw_affiliation_strings":["Department of Electrical and Computer Engineering, University of Toronto, BA4120, 40 St. George Street, Toronto, ON M5S 3G4, Canada"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, University of Toronto, BA4120, 40 St. George Street, Toronto, ON M5S 3G4, Canada","institution_ids":["https://openalex.org/I185261750"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5018168000","display_name":"Saeedeh Parsaeefard","orcid":"https://orcid.org/0000-0002-0865-8179"},"institutions":[{"id":"https://openalex.org/I185261750","display_name":"University of Toronto","ror":"https://ror.org/03dbr7087","country_code":"CA","type":"education","lineage":["https://openalex.org/I185261750"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Saeedeh Parsaeefard","raw_affiliation_strings":["Department of Electrical and Computer Engineering, University of Toronto, BA4120, 40 St. George Street, Toronto, ON M5S 3G4, Canada"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, University of Toronto, BA4120, 40 St. George Street, Toronto, ON M5S 3G4, Canada","institution_ids":["https://openalex.org/I185261750"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5055726968","display_name":"Alberto Leon\u2010Garcia","orcid":"https://orcid.org/0000-0002-9888-0389"},"institutions":[{"id":"https://openalex.org/I185261750","display_name":"University of Toronto","ror":"https://ror.org/03dbr7087","country_code":"CA","type":"education","lineage":["https://openalex.org/I185261750"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Alberto Leon-Garcia","raw_affiliation_strings":["Department of Electrical and Computer Engineering, University of Toronto, BA4120, 40 St. George Street, Toronto, ON M5S 3G4, Canada"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, University of Toronto, BA4120, 40 St. George Street, Toronto, ON M5S 3G4, Canada","institution_ids":["https://openalex.org/I185261750"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5072066922"],"corresponding_institution_ids":["https://openalex.org/I185261750"],"apc_list":{"value":1400,"currency":"CHF","value_usd":1515,"provenance":"doaj"},"apc_paid":{"value":1400,"currency":"CHF","value_usd":1515,"provenance":"doaj"},"fwci":0.458,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.640294,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":80},"biblio":{"volume":"4","issue":"2","first_page":"397","last_page":"417"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9946,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/temporal-database","display_name":"Temporal database","score":0.52283794},{"id":"https://openalex.org/keywords/position","display_name":"Position (finance)","score":0.49689654}],"concepts":[{"id":"https://openalex.org/C9357733","wikidata":"https://www.wikidata.org/wiki/Q6878417","display_name":"Missing data","level":2,"score":0.633051},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6023232},{"id":"https://openalex.org/C96250715","wikidata":"https://www.wikidata.org/wiki/Q965330","display_name":"Estimation","level":2,"score":0.5417619},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5379681},{"id":"https://openalex.org/C77277458","wikidata":"https://www.wikidata.org/wiki/Q1969246","display_name":"Temporal database","level":2,"score":0.52283794},{"id":"https://openalex.org/C198082294","wikidata":"https://www.wikidata.org/wiki/Q3399648","display_name":"Position (finance)","level":2,"score":0.49689654},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.49632818},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.48525643},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.40923902},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.37012804},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.25916463},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.14792177},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.08874872},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.052793205},{"id":"https://openalex.org/C201995342","wikidata":"https://www.wikidata.org/wiki/Q682496","display_name":"Systems engineering","level":1,"score":0.0},{"id":"https://openalex.org/C10138342","wikidata":"https://www.wikidata.org/wiki/Q43015","display_name":"Finance","level":1,"score":0.0}],"mesh":[],"locations_count":4,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/make4020017","pdf_url":"https://www.mdpi.com/2504-4990/4/2/17/pdf?version=1652258902","source":{"id":"https://openalex.org/S4210213891","display_name":"Machine Learning and Knowledge Extraction","issn_l":"2504-4990","issn":["2504-4990"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2108.03400","pdf_url":"https://arxiv.org/pdf/2108.03400","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://doaj.org/article/cdccc93f6d204c94bc79fa1b783a22c0","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2108.03400","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/make4020017","pdf_url":"https://www.mdpi.com/2504-4990/4/2/17/pdf?version=1652258902","source":{"id":"https://openalex.org/S4210213891","display_name":"Machine Learning and Knowledge Extraction","issn_l":"2504-4990","issn":["2504-4990"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":["https://openalex.org/W3189505573"],"referenced_works_count":27,"referenced_works":["https://openalex.org/W2007567350","https://openalex.org/W2036785686","https://openalex.org/W2063491776","https://openalex.org/W2118382442","https://openalex.org/W2131774270","https://openalex.org/W2519887557","https://openalex.org/W2613331518","https://openalex.org/W2613871226","https://openalex.org/W2782791108","https://openalex.org/W2788134583","https://openalex.org/W2788512147","https://openalex.org/W2885178111","https://openalex.org/W2894175828","https://openalex.org/W2946721323","https://openalex.org/W2963123334","https://openalex.org/W2963360736","https://openalex.org/W2964164193","https://openalex.org/W2964308564","https://openalex.org/W2964811671","https://openalex.org/W2965351431","https://openalex.org/W2965683718","https://openalex.org/W2996451395","https://openalex.org/W3004366655","https://openalex.org/W3036836886","https://openalex.org/W3101430345","https://openalex.org/W3106496489","https://openalex.org/W3130794924"],"related_works":["https://openalex.org/W4380150146","https://openalex.org/W4289597203","https://openalex.org/W4285201053","https://openalex.org/W4283773154","https://openalex.org/W3139174110","https://openalex.org/W3024870410","https://openalex.org/W2753779043","https://openalex.org/W2410652950","https://openalex.org/W2085630472","https://openalex.org/W1977098485"],"abstract_inverted_index":{"GNNs":[0,117,144],"have":[1],"been":[2],"proven":[3],"to":[4,46,52,132,161],"perform":[5],"highly":[6],"effectively":[7],"in":[8,16,56,62,175],"various":[9],"node-level,":[10],"edge-level,":[11],"and":[12,32,136,149,171,189],"graph-level":[13],"prediction":[14,121],"tasks":[15],"several":[17],"domains.":[18],"Existing":[19],"approaches":[20],"mainly":[21],"focus":[22],"on":[23,101,118,155],"static":[24],"graphs.":[25,64,108],"However,":[26],"many":[27],"graphs":[28,84,181],"change":[29],"over":[30],"time":[31,45],"their":[33,141],"edge":[34],"may":[35,41],"disappear,":[36],"or":[37],"the":[38,47,57,87,97,114,138,166],"node/edge":[39],"attribute":[40],"alter":[42],"from":[43,145],"one":[44],"other.":[48],"It":[49],"is":[50,111],"essential":[51],"consider":[53],"such":[54],"evolution":[55],"representation":[58],"learning":[59,130],"of":[60,89,99,105,187,193],"nodes":[61,188],"time-varying":[63],"In":[65],"this":[66],"paper,":[67],"we":[68,124],"propose":[69],"a":[70,78,119,128,150,183],"Temporal":[71],"Multilayer":[72],"Position-Aware":[73],"Graph":[74],"Neural":[75],"Network":[76],"(TMP-GNN),":[77],"node":[79,168],"embedding":[80,93],"approach":[81],"for":[82,165,180],"dynamic":[83],"that":[85],"incorporates":[86],"interdependence":[88],"temporal":[90,106],"relations":[91],"into":[92,127],"computation.":[94],"We":[95],"evaluate":[96],"performance":[98,110,139],"TMP-GNN":[100,126],"two":[102],"different":[103],"representations":[104],"multilayered":[107],"The":[109],"assessed":[112],"against":[113],"most":[115],"popular":[116],"node-level":[120],"task.":[122],"Then,":[123],"incorporate":[125],"deep":[129],"framework":[131],"estimate":[133],"missing":[134,176],"data":[135],"compare":[137],"with":[140,182],"corresponding":[142],"competent":[143],"our":[146],"former":[147],"experiment,":[148],"baseline":[151],"method.":[152],"Experimental":[153],"results":[154],"four":[156],"real-world":[157],"datasets":[158],"yield":[159],"up":[160],"58%":[162],"lower":[163,173,190],"ROCAUC":[164],"pair-wise":[167],"classification":[169],"task,":[170],"96%":[172],"MAE":[174],"feature":[177],"estimation,":[178],"particularly":[179],"relatively":[184],"high":[185],"number":[186],"mean":[191],"degree":[192],"connectivity.":[194]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3189505573","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":1}],"updated_date":"2024-12-08T15:17:03.704616","created_date":"2021-08-16"}