{"id":"https://openalex.org/W4220855240","doi":"https://doi.org/10.3390/make4010012","title":"Comparison of Text Mining Models for Food and Dietary Constituent Named-Entity Recognition","display_name":"Comparison of Text Mining Models for Food and Dietary Constituent Named-Entity Recognition","publication_year":2022,"publication_date":"2022-03-16","ids":{"openalex":"https://openalex.org/W4220855240","doi":"https://doi.org/10.3390/make4010012"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/make4010012","pdf_url":"https://www.mdpi.com/2504-4990/4/1/12/pdf?version=1647484682","source":{"id":"https://openalex.org/S4210213891","display_name":"Machine Learning and Knowledge Extraction","issn_l":"2504-4990","issn":["2504-4990"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.mdpi.com/2504-4990/4/1/12/pdf?version=1647484682","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5005343110","display_name":"Nadeesha Perera","orcid":"https://orcid.org/0000-0002-9907-5939"},"institutions":[{"id":"https://openalex.org/I166825849","display_name":"Tampere University","ror":"https://ror.org/033003e23","country_code":"FI","type":"education","lineage":["https://openalex.org/I166825849"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Nadeesha Perera","raw_affiliation_strings":["Predictive Society and Data Analytics Lab, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland"],"affiliations":[{"raw_affiliation_string":"Predictive Society and Data Analytics Lab, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland","institution_ids":["https://openalex.org/I166825849"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101489790","display_name":"Th\u1ecb Th\u00f9y Linh Nguy\u1ec5n","orcid":"https://orcid.org/0000-0003-0175-3031"},"institutions":[{"id":"https://openalex.org/I166825849","display_name":"Tampere University","ror":"https://ror.org/033003e23","country_code":"FI","type":"education","lineage":["https://openalex.org/I166825849"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Thi Thuy Linh Nguyen","raw_affiliation_strings":["Predictive Society and Data Analytics Lab, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland"],"affiliations":[{"raw_affiliation_string":"Predictive Society and Data Analytics Lab, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland","institution_ids":["https://openalex.org/I166825849"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5044244385","display_name":"Matthias Dehmer","orcid":"https://orcid.org/0000-0001-8454-5857"},"institutions":[{"id":"https://openalex.org/I4210116528","display_name":"Swiss Distance University of Applied Sciences","ror":"https://ror.org/01t75ff47","country_code":"CH","type":"education","lineage":["https://openalex.org/I4210116528"]},{"id":"https://openalex.org/I4210114246","display_name":"UMIT - Private Universit\u00e4t f\u00fcr Gesundheitswissenschaften, Medizinische Informatik und Technik","ror":"https://ror.org/02d0kps43","country_code":"AT","type":"education","lineage":["https://openalex.org/I4210114246"]},{"id":"https://openalex.org/I205237279","display_name":"Nankai University","ror":"https://ror.org/01y1kjr75","country_code":"CN","type":"education","lineage":["https://openalex.org/I205237279"]}],"countries":["AT","CH","CN"],"is_corresponding":false,"raw_author_name":"Matthias Dehmer","raw_affiliation_strings":["College of Artificial Intelligence, Nankai University, Tianjin 300350, China","Department of Computer Science, Swiss Distance University of Applied Sciences, 3900 Brig, Switzerland","Department of Mechatronics and Biomedical Computer Science, University for Health Sciences, Medical Informatics and Technology (UMIT), 6060 Hall, Austria"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, Swiss Distance University of Applied Sciences, 3900 Brig, Switzerland","institution_ids":["https://openalex.org/I4210116528"]},{"raw_affiliation_string":"Department of Mechatronics and Biomedical Computer Science, University for Health Sciences, Medical Informatics and Technology (UMIT), 6060 Hall, Austria","institution_ids":["https://openalex.org/I4210114246"]},{"raw_affiliation_string":"College of Artificial Intelligence, Nankai University, Tianjin 300350, China","institution_ids":["https://openalex.org/I205237279"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5057625030","display_name":"Frank Emmert\u2010Streib","orcid":"https://orcid.org/0000-0003-0745-5641"},"institutions":[{"id":"https://openalex.org/I166825849","display_name":"Tampere University","ror":"https://ror.org/033003e23","country_code":"FI","type":"education","lineage":["https://openalex.org/I166825849"]}],"countries":["FI"],"is_corresponding":true,"raw_author_name":"Frank Emmert-Streib","raw_affiliation_strings":["Predictive Society and Data Analytics Lab, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland"],"affiliations":[{"raw_affiliation_string":"Predictive Society and Data Analytics Lab, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland","institution_ids":["https://openalex.org/I166825849"]}]}],"institution_assertions":[],"countries_distinct_count":4,"institutions_distinct_count":4,"corresponding_author_ids":["https://openalex.org/A5057625030"],"corresponding_institution_ids":["https://openalex.org/I166825849"],"apc_list":{"value":1400,"currency":"CHF","value_usd":1515,"provenance":"doaj"},"apc_paid":{"value":1400,"currency":"CHF","value_usd":1515,"provenance":"doaj"},"fwci":2.594,"has_fulltext":false,"cited_by_count":16,"citation_normalized_percentile":{"value":0.99997,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":"4","issue":"1","first_page":"254","last_page":"275"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9935,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9935,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11710","display_name":"Biomedical Text Mining and Ontologies","score":0.9927,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.971,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/named-entity-recognition","display_name":"Named Entity Recognition","score":0.8580633}],"concepts":[{"id":"https://openalex.org/C2779135771","wikidata":"https://www.wikidata.org/wiki/Q403574","display_name":"Named-entity recognition","level":3,"score":0.8580633},{"id":"https://openalex.org/C152565575","wikidata":"https://www.wikidata.org/wiki/Q1124538","display_name":"Conditional random field","level":2,"score":0.7089471},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.65054876},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.64913523},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.6090803},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.59742576},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.45987788},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.40690848},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.32285804},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/make4010012","pdf_url":"https://www.mdpi.com/2504-4990/4/1/12/pdf?version=1647484682","source":{"id":"https://openalex.org/S4210213891","display_name":"Machine Learning and Knowledge Extraction","issn_l":"2504-4990","issn":["2504-4990"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/54a2e0318ebe4d0db2ad8752f1938ce3","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/make4010012","pdf_url":"https://www.mdpi.com/2504-4990/4/1/12/pdf?version=1647484682","source":{"id":"https://openalex.org/S4210213891","display_name":"Machine Learning and Knowledge Extraction","issn_l":"2504-4990","issn":["2504-4990"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":49,"referenced_works":["https://openalex.org/W1532940542","https://openalex.org/W1666916593","https://openalex.org/W1747861911","https://openalex.org/W1964421503","https://openalex.org/W1981797826","https://openalex.org/W2000283853","https://openalex.org/W2010267898","https://openalex.org/W2020278455","https://openalex.org/W2025100889","https://openalex.org/W2031950862","https://openalex.org/W2033339198","https://openalex.org/W2051434435","https://openalex.org/W2063753566","https://openalex.org/W2065963191","https://openalex.org/W2088385955","https://openalex.org/W2094591616","https://openalex.org/W2101553882","https://openalex.org/W2114361266","https://openalex.org/W2120320193","https://openalex.org/W2136038431","https://openalex.org/W2142016317","https://openalex.org/W2162461580","https://openalex.org/W2164612869","https://openalex.org/W2166468803","https://openalex.org/W2174838977","https://openalex.org/W2293800304","https://openalex.org/W2550910797","https://openalex.org/W2734608416","https://openalex.org/W2779457220","https://openalex.org/W2890830728","https://openalex.org/W2895553377","https://openalex.org/W2911448018","https://openalex.org/W2911489562","https://openalex.org/W2912102502","https://openalex.org/W2914453913","https://openalex.org/W2920887996","https://openalex.org/W2925920795","https://openalex.org/W2943781619","https://openalex.org/W2954075147","https://openalex.org/W2963339489","https://openalex.org/W2979826702","https://openalex.org/W2986127174","https://openalex.org/W3000020523","https://openalex.org/W3006083204","https://openalex.org/W3006781240","https://openalex.org/W3007330368","https://openalex.org/W3036787676","https://openalex.org/W3082330004","https://openalex.org/W3136048214"],"related_works":["https://openalex.org/W45206245","https://openalex.org/W4305041692","https://openalex.org/W4250494529","https://openalex.org/W2886890203","https://openalex.org/W2399696375","https://openalex.org/W2211396092","https://openalex.org/W2078793151","https://openalex.org/W2061834489","https://openalex.org/W1964783010","https://openalex.org/W11196620"],"abstract_inverted_index":{"Biomedical":[0],"Named-Entity":[1,92],"Recognition":[2],"(BioNER)":[3],"has":[4,159],"become":[5],"an":[6],"essential":[7],"part":[8],"of":[9,19,153,165],"text":[10],"mining":[11],"due":[12],"to":[13,126,146],"the":[14,98,127,133,154,163,188],"continuously":[15],"increasing":[16],"digital":[17],"archives":[18],"biological":[20],"and":[21,47,65,81,89,113,149,179,195],"medical":[22],"articles.":[23],"While":[24],"there":[25,40],"are":[26],"many":[27],"well-performing":[28],"BioNER":[29,61],"tools":[30],"for":[31,63,177],"entities":[32],"such":[33],"as":[34],"genes,":[35],"proteins,":[36],"diseases":[37],"or":[38],"species,":[39],"is":[41,139],"very":[42],"little":[43],"research":[44],"into":[45],"food":[46,64,178],"dietary":[48,66,180],"constituent":[49,181],"named-entity":[50],"recognition.":[51,68],"For":[52],"this":[53,56],"reason,":[54],"in":[55],"paper,":[57],"we":[58,70,95,104,118],"study":[59,71,105,164],"seven":[60],"models":[62,108,194],"constituents":[67],"Specifically,":[69],"a":[72,75,82,116,174],"dictionary-based":[73],"model,":[74,85],"conditional":[76],"random":[77],"fields":[78],"(CRF)":[79],"model":[80],"new":[83,175],"hybrid":[84],"called":[86],"FooDCoNER":[87,121,138],"(Food":[88],"Dietary":[90],"Constituents":[91],"Recognition),":[93],"which":[94],"introduce":[96],"combining":[97],"former":[99],"two":[100],"models.":[101,199],"In":[102],"addition,":[103],"deep":[106,134,197],"language":[107,135,198],"including":[109],"BERT,":[110],"BioBERT,":[111],"RoBERTa":[112],"ELECTRA.":[114],"As":[115],"result,":[117],"find":[119],"that":[120],"does":[122],"not":[123,171],"only":[124,172],"lead":[125],"overall":[128],"best":[129],"results,":[130],"comparable":[131],"with":[132,144],"models,":[136],"but":[137,183],"also":[140,184],"much":[141],"more":[142],"efficient":[143],"respect":[145],"run":[147],"time":[148],"sample":[150],"size":[151],"requirements":[152],"training":[155],"data.":[156],"The":[157],"latter":[158],"been":[160],"identified":[161],"via":[162],"learning":[166,193],"curves.":[167],"Overall,":[168],"our":[169],"results":[170],"provide":[173],"tool":[176],"NER":[182],"shed":[185],"light":[186],"on":[187],"difference":[189],"between":[190],"classical":[191],"machine":[192],"recent":[196]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4220855240","counts_by_year":[{"year":2024,"cited_by_count":5},{"year":2023,"cited_by_count":8},{"year":2022,"cited_by_count":3}],"updated_date":"2024-12-08T15:17:04.566534","created_date":"2022-04-03"}