{"id":"https://openalex.org/W3216185787","doi":"https://doi.org/10.3390/e23121603","title":"A Multi-Method Survey on the Use of Sentiment Analysis in Multivariate Financial Time Series Forecasting","display_name":"A Multi-Method Survey on the Use of Sentiment Analysis in Multivariate Financial Time Series Forecasting","publication_year":2021,"publication_date":"2021-11-29","ids":{"openalex":"https://openalex.org/W3216185787","doi":"https://doi.org/10.3390/e23121603","mag":"3216185787","pmid":"https://pubmed.ncbi.nlm.nih.gov/34945909"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/e23121603","pdf_url":"https://www.mdpi.com/1099-4300/23/12/1603/pdf?version=1638343341","source":{"id":"https://openalex.org/S195231649","display_name":"Entropy","issn_l":"1099-4300","issn":["1099-4300"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"review","type_crossref":"journal-article","indexed_in":["crossref","doaj","pubmed"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.mdpi.com/1099-4300/23/12/1603/pdf?version=1638343341","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5045145081","display_name":"Charalampos M. Liapis","orcid":"https://orcid.org/0000-0002-4717-031X"},"institutions":[{"id":"https://openalex.org/I174878644","display_name":"University of Patras","ror":"https://ror.org/017wvtq80","country_code":"GR","type":"funder","lineage":["https://openalex.org/I174878644"]}],"countries":["GR"],"is_corresponding":true,"raw_author_name":"Charalampos M. Liapis","raw_affiliation_strings":["Department of Mathematics, University of Patras, 26504 Patras, Greece"],"affiliations":[{"raw_affiliation_string":"Department of Mathematics, University of Patras, 26504 Patras, Greece","institution_ids":["https://openalex.org/I174878644"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5088798284","display_name":"Aikaterini Karanikola","orcid":"https://orcid.org/0009-0006-4226-6597"},"institutions":[{"id":"https://openalex.org/I174878644","display_name":"University of Patras","ror":"https://ror.org/017wvtq80","country_code":"GR","type":"funder","lineage":["https://openalex.org/I174878644"]}],"countries":["GR"],"is_corresponding":true,"raw_author_name":"Aikaterini Karanikola","raw_affiliation_strings":["Department of Mathematics, University of Patras, 26504 Patras, Greece"],"affiliations":[{"raw_affiliation_string":"Department of Mathematics, University of Patras, 26504 Patras, Greece","institution_ids":["https://openalex.org/I174878644"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5066370772","display_name":"Sotiris Kotsiantis","orcid":"https://orcid.org/0000-0002-2247-3082"},"institutions":[{"id":"https://openalex.org/I174878644","display_name":"University of Patras","ror":"https://ror.org/017wvtq80","country_code":"GR","type":"funder","lineage":["https://openalex.org/I174878644"]}],"countries":["GR"],"is_corresponding":false,"raw_author_name":"Sotiris Kotsiantis","raw_affiliation_strings":["Department of Mathematics, University of Patras, 26504 Patras, Greece"],"affiliations":[{"raw_affiliation_string":"Department of Mathematics, University of Patras, 26504 Patras, Greece","institution_ids":["https://openalex.org/I174878644"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5045145081","https://openalex.org/A5088798284"],"corresponding_institution_ids":["https://openalex.org/I174878644","https://openalex.org/I174878644"],"apc_list":{"value":2000,"currency":"CHF","value_usd":2165,"provenance":"doaj"},"apc_paid":{"value":2000,"currency":"CHF","value_usd":2165,"provenance":"doaj"},"fwci":1.282,"has_fulltext":false,"cited_by_count":14,"citation_normalized_percentile":{"value":0.589172,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":90,"max":91},"biblio":{"volume":"23","issue":"12","first_page":"1603","last_page":"1603"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/predictability","display_name":"Predictability","score":0.822776},{"id":"https://openalex.org/keywords/sentiment-analysis","display_name":"Sentiment Analysis","score":0.5964928}],"concepts":[{"id":"https://openalex.org/C197640229","wikidata":"https://www.wikidata.org/wiki/Q2534066","display_name":"Predictability","level":2,"score":0.822776},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7429036},{"id":"https://openalex.org/C161584116","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate statistics","level":2,"score":0.63670814},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.6027683},{"id":"https://openalex.org/C66402592","wikidata":"https://www.wikidata.org/wiki/Q2271421","display_name":"Sentiment analysis","level":2,"score":0.5964928},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.59420776},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.5298968},{"id":"https://openalex.org/C61797465","wikidata":"https://www.wikidata.org/wiki/Q1188986","display_name":"Term (time)","level":2,"score":0.50298494},{"id":"https://openalex.org/C10138342","wikidata":"https://www.wikidata.org/wiki/Q43015","display_name":"Finance","level":1,"score":0.46171},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.42595848},{"id":"https://openalex.org/C81917197","wikidata":"https://www.wikidata.org/wiki/Q628760","display_name":"Selection (genetic algorithm)","level":2,"score":0.42164975},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4209736},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.4009807},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3922866},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.15478644},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.11227813},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.07530245},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0}],"mesh":[],"locations_count":4,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/e23121603","pdf_url":"https://www.mdpi.com/1099-4300/23/12/1603/pdf?version=1638343341","source":{"id":"https://openalex.org/S195231649","display_name":"Entropy","issn_l":"1099-4300","issn":["1099-4300"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/43fb8ebb7ffb478bbbaa09ffd08a77e2","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700726","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/34945909","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/e23121603","pdf_url":"https://www.mdpi.com/1099-4300/23/12/1603/pdf?version=1638343341","source":{"id":"https://openalex.org/S195231649","display_name":"Entropy","issn_l":"1099-4300","issn":["1099-4300"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":52,"referenced_works":["https://openalex.org/W1546425147","https://openalex.org/W1566256432","https://openalex.org/W1678356000","https://openalex.org/W1964357740","https://openalex.org/W1974696541","https://openalex.org/W2018519044","https://openalex.org/W2024548552","https://openalex.org/W2053834050","https://openalex.org/W2056132907","https://openalex.org/W2061554433","https://openalex.org/W2063978378","https://openalex.org/W2064675550","https://openalex.org/W2091085232","https://openalex.org/W2092260586","https://openalex.org/W2099813784","https://openalex.org/W2122825543","https://openalex.org/W2135046866","https://openalex.org/W2160218441","https://openalex.org/W2275526741","https://openalex.org/W2593794846","https://openalex.org/W2603721671","https://openalex.org/W2609521642","https://openalex.org/W2728164238","https://openalex.org/W2894821558","https://openalex.org/W2896457183","https://openalex.org/W2901737885","https://openalex.org/W2911964244","https://openalex.org/W2949985842","https://openalex.org/W2968209746","https://openalex.org/W2971270198","https://openalex.org/W2973508239","https://openalex.org/W3009009611","https://openalex.org/W3016053201","https://openalex.org/W3016597555","https://openalex.org/W3021062812","https://openalex.org/W3025786140","https://openalex.org/W3049310425","https://openalex.org/W3087490263","https://openalex.org/W3090661556","https://openalex.org/W3100909980","https://openalex.org/W3101323730","https://openalex.org/W3107324520","https://openalex.org/W3137262131","https://openalex.org/W3153053057","https://openalex.org/W3157581149","https://openalex.org/W4205224892","https://openalex.org/W4241727697","https://openalex.org/W4242607850","https://openalex.org/W4251372957","https://openalex.org/W4252450832","https://openalex.org/W4297957988","https://openalex.org/W4399647672"],"related_works":["https://openalex.org/W4254065731","https://openalex.org/W2726467123","https://openalex.org/W2622688551","https://openalex.org/W2119012848","https://openalex.org/W2118640767","https://openalex.org/W2064726690","https://openalex.org/W1990205660","https://openalex.org/W1965581502","https://openalex.org/W1861848143","https://openalex.org/W1550175370"],"abstract_inverted_index":{"In":[0],"practice,":[1],"time":[2,23,132],"series":[3,24,133],"forecasting":[4],"involves":[5,33],"the":[6,31,38,42,48,51,97,117,120,125,142,146,150,153,167,170,176,187],"creation":[7],"of":[8,50,53,92,99,119,124,127,145,152,173,178,192],"models":[9],"that":[10,30,70,155],"generalize":[11],"data":[12,58],"from":[13,60],"past":[14],"values":[15],"and":[16,63],"produce":[17],"future":[18],"predictions.":[19],"Moreover,":[20],"regarding":[21],"financial":[22,72],"forecasting,":[25],"it":[26],"can":[27],"be":[28],"assumed":[29],"procedure":[32],"phenomena":[34],"partly":[35],"shaped":[36],"by":[37,162],"social":[39,61],"environment.":[40],"Thus,":[41],"present":[43],"work":[44],"is":[45],"concerned":[46],"with":[47],"study":[49],"use":[52,126,177],"sentiment":[54,128,180],"analysis":[55,129],"methods":[56,154],"in":[57,66,116,122,131,182],"extracted":[59,85],"networks":[62],"their":[64],"utilization":[65],"multivariate":[67],"prediction":[68],"architectures":[69],"involve":[71],"data.":[73],"Through":[74],"an":[75],"extensive":[76],"experimental":[77],"process,":[78],"22":[79],"different":[80,94,101],"input":[81],"setups":[82,181],"using":[83],"such":[84],"information":[86],"were":[87,105],"tested,":[88],"over":[89],"a":[90,139,189],"total":[91],"16":[93],"datasets,":[95],"under":[96,107],"schemes":[98],"27":[100],"algorithms.":[102],"The":[103,111,135,158],"comparisons":[104],"structured":[106],"two":[108],"case":[109],"studies.":[110],"first":[112],"concerns":[113,149],"possible":[114,143],"improvements":[115],"performance":[118],"forecasts":[121,184],"light":[123],"systems":[130],"forecasting.":[134],"second,":[136],"having":[137],"as":[138,160],"framework":[140],"all":[141],"versions":[144],"above":[147],"configuration,":[148],"selection":[151],"perform":[156],"best.":[157],"results,":[159],"presented":[161],"various":[163],"illustrations,":[164],"indicate,":[165],"on":[166,186],"one":[168],"hand,":[169],"conditional":[171],"improvement":[172],"predictability":[174],"after":[175],"specific":[179],"long-term":[183],"and,":[185],"other,":[188],"universal":[190],"predominance":[191],"long":[193],"short-term":[194],"memory":[195],"architectures.":[196]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3216185787","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":6},{"year":2022,"cited_by_count":6}],"updated_date":"2025-01-25T03:32:59.331912","created_date":"2021-12-06"}