{"id":"https://openalex.org/W3108316614","doi":"https://doi.org/10.3390/e22121363","title":"Functional Kernel Density Estimation: Point and Fourier Approaches to Time Series Anomaly Detection","display_name":"Functional Kernel Density Estimation: Point and Fourier Approaches to Time Series Anomaly Detection","publication_year":2020,"publication_date":"2020-11-30","ids":{"openalex":"https://openalex.org/W3108316614","doi":"https://doi.org/10.3390/e22121363","mag":"3108316614","pmid":"https://pubmed.ncbi.nlm.nih.gov/33266340","pmcid":"https://www.ncbi.nlm.nih.gov/pmc/articles/7759980"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/e22121363","pdf_url":"https://www.mdpi.com/1099-4300/22/12/1363/pdf?version=1606880821","source":{"id":"https://openalex.org/S195231649","display_name":"Entropy","issn_l":"1099-4300","issn":["1099-4300"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.mdpi.com/1099-4300/22/12/1363/pdf?version=1606880821","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5053511464","display_name":"Michael R. Lindstrom","orcid":"https://orcid.org/0000-0002-2841-1691"},"institutions":[{"id":"https://openalex.org/I161318765","display_name":"University of California, Los Angeles","ror":"https://ror.org/046rm7j60","country_code":"US","type":"education","lineage":["https://openalex.org/I161318765"]}],"countries":["US"],"is_corresponding":true,"raw_author_name":"Michael R. Lindstrom","raw_affiliation_strings":["Department of Mathematics, University of California, Los Angeles, CA 90024, USA"],"affiliations":[{"raw_affiliation_string":"Department of Mathematics, University of California, Los Angeles, CA 90024, USA","institution_ids":["https://openalex.org/I161318765"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5007967900","display_name":"Hyuntae Jung","orcid":"https://orcid.org/0000-0002-5456-0244"},"institutions":[{"id":"https://openalex.org/I4210130555","display_name":"International Air Transport Association","ror":"https://ror.org/03ja7dr12","country_code":"CA","type":"other","lineage":["https://openalex.org/I4210130555"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Hyuntae Jung","raw_affiliation_strings":["Global Aviation Data Management, International Air Transport Association (IATA), Montr\u00e9al, QC H2Y 1C6, Canada"],"affiliations":[{"raw_affiliation_string":"Global Aviation Data Management, International Air Transport Association (IATA), Montr\u00e9al, QC H2Y 1C6, Canada","institution_ids":["https://openalex.org/I4210130555"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5001422267","display_name":"Denis Larocque","orcid":"https://orcid.org/0000-0002-7372-7943"},"institutions":[{"id":"https://openalex.org/I108192572","display_name":"HEC Montr\u00e9al","ror":"https://ror.org/05ww3wq27","country_code":"CA","type":"education","lineage":["https://openalex.org/I108192572"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Denis Larocque","raw_affiliation_strings":["Department of Decision Sciences, HEC Montr\u00e9al, Montr\u00e9al, QC H2Y 1C6, Canada"],"affiliations":[{"raw_affiliation_string":"Department of Decision Sciences, HEC Montr\u00e9al, Montr\u00e9al, QC H2Y 1C6, Canada","institution_ids":["https://openalex.org/I108192572"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":["https://openalex.org/A5053511464"],"corresponding_institution_ids":["https://openalex.org/I161318765"],"apc_list":{"value":2000,"currency":"CHF","value_usd":2165,"provenance":"doaj"},"apc_paid":{"value":2000,"currency":"CHF","value_usd":2165,"provenance":"doaj"},"fwci":0.595,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":9,"citation_normalized_percentile":{"value":0.849329,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":85,"max":86},"biblio":{"volume":"22","issue":"12","first_page":"1363","last_page":"1363"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11871","display_name":"Advanced Statistical Methods and Models","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10876","display_name":"Fault Detection and Control Systems","score":0.9866,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/kernel-density-estimation","display_name":"Kernel density estimation","score":0.63427013},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.55756277}],"concepts":[{"id":"https://openalex.org/C80884492","wikidata":"https://www.wikidata.org/wiki/Q3345678","display_name":"Reproducing kernel Hilbert space","level":3,"score":0.6841466},{"id":"https://openalex.org/C71134354","wikidata":"https://www.wikidata.org/wiki/Q458825","display_name":"Kernel density estimation","level":3,"score":0.63427013},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.59486157},{"id":"https://openalex.org/C134517425","wikidata":"https://www.wikidata.org/wiki/Q16000131","display_name":"Kernel embedding of distributions","level":4,"score":0.5814927},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.5679886},{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.5576006},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.55756277},{"id":"https://openalex.org/C197055811","wikidata":"https://www.wikidata.org/wiki/Q207522","display_name":"Probability density function","level":2,"score":0.5289581},{"id":"https://openalex.org/C195699287","wikidata":"https://www.wikidata.org/wiki/Q7915722","display_name":"Variable kernel density estimation","level":4,"score":0.51860476},{"id":"https://openalex.org/C182335926","wikidata":"https://www.wikidata.org/wiki/Q17093020","display_name":"Kernel principal component analysis","level":4,"score":0.5067881},{"id":"https://openalex.org/C84894716","wikidata":"https://www.wikidata.org/wiki/Q6935135","display_name":"Multivariate kernel density estimation","level":5,"score":0.48411238},{"id":"https://openalex.org/C122280245","wikidata":"https://www.wikidata.org/wiki/Q620622","display_name":"Kernel method","level":3,"score":0.4535235},{"id":"https://openalex.org/C149441793","wikidata":"https://www.wikidata.org/wiki/Q200726","display_name":"Probability distribution","level":2,"score":0.44412893},{"id":"https://openalex.org/C62799726","wikidata":"https://www.wikidata.org/wiki/Q190056","display_name":"Hilbert space","level":2,"score":0.38737074},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3765224},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.35011363},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.30628264},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.29584306},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.16426098},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.09440577},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/e22121363","pdf_url":"https://www.mdpi.com/1099-4300/22/12/1363/pdf?version=1606880821","source":{"id":"https://openalex.org/S195231649","display_name":"Entropy","issn_l":"1099-4300","issn":["1099-4300"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/0f721c59e41c42c7b7e1531eac0921af","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7759980","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/e22121363","pdf_url":"https://www.mdpi.com/1099-4300/22/12/1363/pdf?version=1606880821","source":{"id":"https://openalex.org/S195231649","display_name":"Entropy","issn_l":"1099-4300","issn":["1099-4300"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.66,"display_name":"Life on land","id":"https://metadata.un.org/sdg/15"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":29,"referenced_works":["https://openalex.org/W1969456163","https://openalex.org/W2043624558","https://openalex.org/W2057278574","https://openalex.org/W2119276761","https://openalex.org/W2133777675","https://openalex.org/W2153313896","https://openalex.org/W2161887712","https://openalex.org/W2167090025","https://openalex.org/W2278984902","https://openalex.org/W2476472034","https://openalex.org/W2726748953","https://openalex.org/W2739468396","https://openalex.org/W2782794437","https://openalex.org/W2791856536","https://openalex.org/W2990129927","https://openalex.org/W3000532327","https://openalex.org/W3005893373","https://openalex.org/W3008272911","https://openalex.org/W3014106621","https://openalex.org/W3016692872","https://openalex.org/W3034796746","https://openalex.org/W3045657706","https://openalex.org/W3047198203","https://openalex.org/W3121190520","https://openalex.org/W3155567600","https://openalex.org/W4236700646","https://openalex.org/W4250766106","https://openalex.org/W4301753623","https://openalex.org/W87980779"],"related_works":["https://openalex.org/W50698531","https://openalex.org/W3083480032","https://openalex.org/W3023615479","https://openalex.org/W2535206775","https://openalex.org/W2512565647","https://openalex.org/W2393746448","https://openalex.org/W2127229869","https://openalex.org/W2071590642","https://openalex.org/W2026134196","https://openalex.org/W1984421104"],"abstract_inverted_index":{"We":[0,91,165],"present":[1],"an":[2,138],"unsupervised":[3],"method":[4,145],"to":[5,32,75,83,93,128],"detect":[6],"anomalous":[7,117],"time":[8,14,113],"series":[9,48,114],"among":[10],"a":[11,50,53,57,85,112,129,143,150],"collection":[12],"of":[13,79,131,169],"series.":[15],"To":[16],"do":[17],"so,":[18],"we":[19,39],"extend":[20],"traditional":[21],"Kernel":[22,72,98],"Density":[23,73,99],"Estimation":[24,74,100],"for":[25,101,115,146,155],"estimating":[26],"probability":[27,37,86],"distributions":[28,78],"in":[29,52],"Euclidean":[30],"space":[31],"Hilbert":[33,54],"spaces.":[34],"The":[35],"estimated":[36],"densities":[38],"derive":[40],"can":[41,110],"be":[42],"obtained":[43],"formally":[44],"through":[45,70],"treating":[46],"each":[47],"as":[49,96,104],"point":[51],"space,":[55],"placing":[56],"kernel":[58],"at":[59],"those":[60],"points,":[61],"and":[62,126,158],"summing":[63],"the":[64,77,160,167,170,179],"kernels":[65],"(a":[66,88],"\u201cpoint":[67],"approach\u201d),":[68],"or":[69],"using":[71],"approximate":[76],"Fourier":[80],"mode":[81],"coefficients":[82],"infer":[84],"density":[87],"\u201cFourier":[89],"approach\u201d).":[90],"refer":[92],"these":[94],"approaches":[95],"Functional":[97,161],"Anomaly":[102],"Detection":[103],"they":[105],"both":[106],"yield":[107],"functionals":[108],"that":[109],"score":[111,140],"how":[116],"it":[118],"is.":[119],"Both":[120],"methods":[121,172],"naturally":[122],"handle":[123],"missing":[124],"data":[125,177],"apply":[127],"variety":[130],"settings,":[132],"performing":[133],"well":[134],"when":[135],"compared":[136],"with":[137,149,159,173],"outlyingness":[139],"derived":[141],"from":[142,178],"boxplot":[144],"functional":[147,156],"data,":[148,157],"Principal":[151],"Component":[152],"Analysis":[153],"approach":[154],"Isolation":[162],"Forest":[163],"method.":[164],"illustrate":[166],"use":[168],"proposed":[171],"aviation":[174],"safety":[175],"report":[176],"International":[180],"Air":[181],"Transport":[182],"Association":[183],"(IATA).":[184]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3108316614","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":2}],"updated_date":"2025-01-07T20:04:08.126328","created_date":"2020-12-07"}