{"id":"https://openalex.org/W3005624264","doi":"https://doi.org/10.3390/e22020220","title":"Magnetic Resonance Image Quality Assessment by Using Non-Maximum Suppression and Entropy Analysis","display_name":"Magnetic Resonance Image Quality Assessment by Using Non-Maximum Suppression and Entropy Analysis","publication_year":2020,"publication_date":"2020-02-16","ids":{"openalex":"https://openalex.org/W3005624264","doi":"https://doi.org/10.3390/e22020220","mag":"3005624264","pmid":"https://pubmed.ncbi.nlm.nih.gov/33285994","pmcid":"https://www.ncbi.nlm.nih.gov/pmc/articles/7516651"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/e22020220","pdf_url":"https://www.mdpi.com/1099-4300/22/2/220/pdf?version=1581855160","source":{"id":"https://openalex.org/S195231649","display_name":"Entropy","issn_l":"1099-4300","issn":["1099-4300"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj","pubmed"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.mdpi.com/1099-4300/22/2/220/pdf?version=1581855160","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5016614829","display_name":"Rafa\u0142 Obuchowicz","orcid":"https://orcid.org/0000-0001-5883-5551"},"institutions":[{"id":"https://openalex.org/I126596746","display_name":"Jagiellonian University","ror":"https://ror.org/03bqmcz70","country_code":"PL","type":"education","lineage":["https://openalex.org/I126596746"]}],"countries":["PL"],"is_corresponding":false,"raw_author_name":"Rafa\u0142 Obuchowicz","raw_affiliation_strings":["Department of Diagnostic Imaging, Jagiellonian University Medical College, 19 Kopernika Street, 31-501 Cracow, Poland"],"affiliations":[{"raw_affiliation_string":"Department of Diagnostic Imaging, Jagiellonian University Medical College, 19 Kopernika Street, 31-501 Cracow, Poland","institution_ids":["https://openalex.org/I126596746"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5042696358","display_name":"Mariusz Oszust","orcid":"https://orcid.org/0000-0002-5482-6313"},"institutions":[{"id":"https://openalex.org/I111664937","display_name":"Rzesz\u00f3w University of Technology","ror":"https://ror.org/056xse072","country_code":"PL","type":"education","lineage":["https://openalex.org/I111664937"]}],"countries":["PL"],"is_corresponding":false,"raw_author_name":"Mariusz Oszust","raw_affiliation_strings":["Department of Computer and Control Engineering, Rzeszow University of Technology, W. Pola 2, 35-959 Rzeszow, Poland"],"affiliations":[{"raw_affiliation_string":"Department of Computer and Control Engineering, Rzeszow University of Technology, W. Pola 2, 35-959 Rzeszow, Poland","institution_ids":["https://openalex.org/I111664937"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5011981224","display_name":"Marzena Bielecka","orcid":"https://orcid.org/0000-0002-8472-684X"},"institutions":[{"id":"https://openalex.org/I686019","display_name":"AGH University of Krakow","ror":"https://ror.org/00bas1c41","country_code":"PL","type":"education","lineage":["https://openalex.org/I686019"]}],"countries":["PL"],"is_corresponding":true,"raw_author_name":"Marzena Bielecka","raw_affiliation_strings":["Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland"],"affiliations":[{"raw_affiliation_string":"Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland","institution_ids":["https://openalex.org/I686019"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5025634939","display_name":"Andrzej Bielecki","orcid":"https://orcid.org/0000-0002-0192-3785"},"institutions":[{"id":"https://openalex.org/I686019","display_name":"AGH University of Krakow","ror":"https://ror.org/00bas1c41","country_code":"PL","type":"education","lineage":["https://openalex.org/I686019"]}],"countries":["PL"],"is_corresponding":false,"raw_author_name":"Andrzej Bielecki","raw_affiliation_strings":["Faculty of Electrical Engineering, Automation, Computer Science and Biomedical Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland"],"affiliations":[{"raw_affiliation_string":"Faculty of Electrical Engineering, Automation, Computer Science and Biomedical Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland","institution_ids":["https://openalex.org/I686019"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5087565712","display_name":"Adam Pi\u00f3rkowski","orcid":"https://orcid.org/0000-0003-4773-5322"},"institutions":[{"id":"https://openalex.org/I686019","display_name":"AGH University of Krakow","ror":"https://ror.org/00bas1c41","country_code":"PL","type":"education","lineage":["https://openalex.org/I686019"]}],"countries":["PL"],"is_corresponding":false,"raw_author_name":"Adam Pi\u00f3rkowski","raw_affiliation_strings":["Department of Biocybernetics and Biomedical Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland"],"affiliations":[{"raw_affiliation_string":"Department of Biocybernetics and Biomedical Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland","institution_ids":["https://openalex.org/I686019"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":["https://openalex.org/A5011981224"],"corresponding_institution_ids":["https://openalex.org/I686019"],"apc_list":{"value":2000,"currency":"CHF","value_usd":2165,"provenance":"doaj"},"apc_paid":{"value":2000,"currency":"CHF","value_usd":2165,"provenance":"doaj"},"fwci":1.631,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":24,"citation_normalized_percentile":{"value":0.999938,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":"22","issue":"2","first_page":"220","last_page":"220"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11165","display_name":"Image and Video Quality Assessment","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11165","display_name":"Image and Video Quality Assessment","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/maxima-and-minima","display_name":"Maxima and minima","score":0.5393088},{"id":"https://openalex.org/keywords/margin","display_name":"Margin (machine learning)","score":0.41239244}],"concepts":[{"id":"https://openalex.org/C55020928","wikidata":"https://www.wikidata.org/wiki/Q3813865","display_name":"Image quality","level":3,"score":0.73847353},{"id":"https://openalex.org/C106301342","wikidata":"https://www.wikidata.org/wiki/Q4117933","display_name":"Entropy (arrow of time)","level":2,"score":0.6341239},{"id":"https://openalex.org/C117220453","wikidata":"https://www.wikidata.org/wiki/Q5172842","display_name":"Correlation","level":2,"score":0.5696217},{"id":"https://openalex.org/C159744936","wikidata":"https://www.wikidata.org/wiki/Q1126730","display_name":"Spearman's rank correlation coefficient","level":2,"score":0.55753523},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.54923075},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5443456},{"id":"https://openalex.org/C186633575","wikidata":"https://www.wikidata.org/wiki/Q845060","display_name":"Maxima and minima","level":2,"score":0.5393088},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.48646542},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.4677933},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.4481982},{"id":"https://openalex.org/C139945424","wikidata":"https://www.wikidata.org/wiki/Q1940696","display_name":"Mean squared error","level":2,"score":0.43691155},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.4238928},{"id":"https://openalex.org/C774472","wikidata":"https://www.wikidata.org/wiki/Q6760393","display_name":"Margin (machine learning)","level":2,"score":0.41239244},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.40266117},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.17931208},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.13972002},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":5,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/e22020220","pdf_url":"https://www.mdpi.com/1099-4300/22/2/220/pdf?version=1581855160","source":{"id":"https://openalex.org/S195231649","display_name":"Entropy","issn_l":"1099-4300","issn":["1099-4300"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/315483698726433788bc885d4c964cad","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516651","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://ruj.uj.edu.pl/xmlui/handle/item/264430","pdf_url":"https://ruj.uj.edu.pl/xmlui/bitstream/handle/item/264430/obuchowicz_et-al_magnetic_resonance_image_2020.pdf?sequence=1&isAllowed=y","source":{"id":"https://openalex.org/S4306400316","display_name":"Homo Politicus (Academy of Humanities and Economics in Lodz)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/33285994","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/e22020220","pdf_url":"https://www.mdpi.com/1099-4300/22/2/220/pdf?version=1581855160","source":{"id":"https://openalex.org/S195231649","display_name":"Entropy","issn_l":"1099-4300","issn":["1099-4300"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":39,"referenced_works":["https://openalex.org/W1977725648","https://openalex.org/W1982471090","https://openalex.org/W1986974829","https://openalex.org/W1995875735","https://openalex.org/W2010166335","https://openalex.org/W2014547837","https://openalex.org/W2024634962","https://openalex.org/W2035713052","https://openalex.org/W2057224480","https://openalex.org/W2073623229","https://openalex.org/W2079615115","https://openalex.org/W2092062478","https://openalex.org/W2108353674","https://openalex.org/W2131752914","https://openalex.org/W2133665775","https://openalex.org/W2144506857","https://openalex.org/W2161907179","https://openalex.org/W2171125155","https://openalex.org/W2296030939","https://openalex.org/W2587441293","https://openalex.org/W2606229973","https://openalex.org/W2612624696","https://openalex.org/W2618902759","https://openalex.org/W2734603456","https://openalex.org/W2754887662","https://openalex.org/W2768340063","https://openalex.org/W2777280533","https://openalex.org/W2789357782","https://openalex.org/W2792470516","https://openalex.org/W2793324219","https://openalex.org/W2799710270","https://openalex.org/W2804263814","https://openalex.org/W2807217564","https://openalex.org/W2901763875","https://openalex.org/W2910524170","https://openalex.org/W2924166657","https://openalex.org/W2950318887","https://openalex.org/W2963541822","https://openalex.org/W3098560717"],"related_works":["https://openalex.org/W4246278799","https://openalex.org/W3188646203","https://openalex.org/W3163198019","https://openalex.org/W2909957174","https://openalex.org/W2375684291","https://openalex.org/W2354676191","https://openalex.org/W2105527480","https://openalex.org/W2052387497","https://openalex.org/W2050203848","https://openalex.org/W136674370"],"abstract_inverted_index":{"An":[0],"investigation":[1],"of":[2,29,31,36,55,66,78,97,111,114,176],"diseases":[3],"using":[4,68],"magnetic":[5],"resonance":[6],"(MR)":[7],"imaging":[8,32],"requires":[9],"automatic":[10],"image":[11,37,47,87],"quality":[12,48,77,104],"assessment":[13,49],"methods":[14,21,179],"able":[15],"to":[16],"exclude":[17],"low-quality":[18],"scans.":[19],"Such":[20],"can":[22],"be":[23],"also":[24],"employed":[25],"for":[26,52,157],"an":[27,79],"optimization":[28],"parameters":[30],"systems":[33],"or":[34],"evaluation":[35,54,175],"processing":[38],"algorithms.":[39],"Therefore,":[40],"in":[41,83,162],"this":[42],"paper,":[43],"a":[44,112,133,189],"novel":[45],"blind":[46],"(BIQA)":[50],"method":[51,159],"the":[53,64,75,84,86,92,103,109,119,158,163,177,182],"MR":[56,136],"images":[57,137,161],"is":[58,61,88,105,126],"introduced.":[59],"It":[60],"observed":[62],"that":[63,181],"result":[65],"filtering":[67],"non-maximum":[69],"suppression":[70],"(NMS)":[71],"strongly":[72],"depends":[73],"on":[74,132],"perceptual":[76],"input":[80],"image.":[81],"Hence,":[82],"method,":[85],"first":[89],"processed":[90],"by":[91,108,142,188],"NMS":[93],"with":[94,118,128,196],"various":[95],"levels":[96],"acceptable":[98],"local":[99],"intensity":[100],"difference.":[101],"Then,":[102],"efficiently":[106],"expressed":[107],"entropy":[110],"sequence":[113],"extrema":[115],"numbers":[116],"obtained":[117],"thresholded":[120],"NMS.":[121],"The":[122,146,172],"proposed":[123],"BIQA":[124,178],"approach":[125],"compared":[127],"ten":[129],"state-of-the-art":[130],"techniques":[131,187],"dataset":[134,164],"containing":[135],"and":[138,152,169],"subjective":[139],"scores":[140],"provided":[141],"31":[143],"experienced":[144],"radiologists.":[145],"Pearson,":[147],"Spearman,":[148],"Kendall":[149],"correlation":[150],"coefficients":[151],"root":[153],"mean":[154],"square":[155],"error":[156],"assessing":[160],"were":[165],"0.6741,":[166],"0.3540,":[167],"0.2428,":[168],"0.5375,":[170],"respectively.":[171],"extensive":[173],"experimental":[174],"reveals":[180],"introduced":[183],"measure":[184],"outperforms":[185],"related":[186],"large":[190],"margin":[191],"as":[192],"it":[193],"correlates":[194],"better":[195],"human":[197],"scores.":[198]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3005624264","counts_by_year":[{"year":2024,"cited_by_count":7},{"year":2023,"cited_by_count":8},{"year":2022,"cited_by_count":4},{"year":2021,"cited_by_count":2},{"year":2020,"cited_by_count":3}],"updated_date":"2025-01-07T20:07:44.309695","created_date":"2020-02-24"}