{"id":"https://openalex.org/W2973687035","doi":"https://doi.org/10.3390/e21090906","title":"A Hierarchical Gamma Mixture Model-Based Method for Classification of High-Dimensional Data","display_name":"A Hierarchical Gamma Mixture Model-Based Method for Classification of High-Dimensional Data","publication_year":2019,"publication_date":"2019-09-18","ids":{"openalex":"https://openalex.org/W2973687035","doi":"https://doi.org/10.3390/e21090906","mag":"2973687035","pmcid":"https://www.ncbi.nlm.nih.gov/pmc/articles/7515435"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/e21090906","pdf_url":"https://www.mdpi.com/1099-4300/21/9/906/pdf?version=1568790669","source":{"id":"https://openalex.org/S195231649","display_name":"Entropy","issn_l":"1099-4300","issn":["1099-4300"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.mdpi.com/1099-4300/21/9/906/pdf?version=1568790669","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5052072467","display_name":"Muhammad Azhar","orcid":"https://orcid.org/0000-0003-3687-0270"},"institutions":[{"id":"https://openalex.org/I180726961","display_name":"Shenzhen University","ror":"https://ror.org/01vy4gh70","country_code":"CN","type":"education","lineage":["https://openalex.org/I180726961"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Muhammad Azhar","raw_affiliation_strings":["College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China"],"affiliations":[{"raw_affiliation_string":"College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China","institution_ids":["https://openalex.org/I180726961"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5037374554","display_name":"Mark Junjie Li","orcid":"https://orcid.org/0000-0002-7252-5346"},"institutions":[{"id":"https://openalex.org/I180726961","display_name":"Shenzhen University","ror":"https://ror.org/01vy4gh70","country_code":"CN","type":"education","lineage":["https://openalex.org/I180726961"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Mark Junjie Li","raw_affiliation_strings":["College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China"],"affiliations":[{"raw_affiliation_string":"College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China","institution_ids":["https://openalex.org/I180726961"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5003347359","display_name":"Joshua Zhexue Huang","orcid":"https://orcid.org/0000-0002-6797-2571"},"institutions":[{"id":"https://openalex.org/I180726961","display_name":"Shenzhen University","ror":"https://ror.org/01vy4gh70","country_code":"CN","type":"education","lineage":["https://openalex.org/I180726961"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Joshua Zhexue Huang","raw_affiliation_strings":["College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China"],"affiliations":[{"raw_affiliation_string":"College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China","institution_ids":["https://openalex.org/I180726961"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5003347359"],"corresponding_institution_ids":["https://openalex.org/I180726961"],"apc_list":{"value":2000,"currency":"CHF","value_usd":2165,"provenance":"doaj"},"apc_paid":{"value":2000,"currency":"CHF","value_usd":2165,"provenance":"doaj"},"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":3,"citation_normalized_percentile":{"value":0.44731,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":74,"max":77},"biblio":{"volume":"21","issue":"9","first_page":"906","last_page":"906"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10637","display_name":"Advanced Clustering Algorithms Research","score":0.9915,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10637","display_name":"Advanced Clustering Algorithms Research","score":0.9915,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10885","display_name":"Gene expression and cancer classification","score":0.9862,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9848,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/clustering-high-dimensional-data","display_name":"Clustering high-dimensional data","score":0.50577354},{"id":"https://openalex.org/keywords/hierarchical-clustering","display_name":"Hierarchical clustering","score":0.4316656}],"concepts":[{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.6881228},{"id":"https://openalex.org/C32834561","wikidata":"https://www.wikidata.org/wiki/Q660730","display_name":"Subspace topology","level":2,"score":0.65302277},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.64809686},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6440277},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.5121953},{"id":"https://openalex.org/C184509293","wikidata":"https://www.wikidata.org/wiki/Q5136711","display_name":"Clustering high-dimensional data","level":3,"score":0.50577354},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.46796995},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.45978597},{"id":"https://openalex.org/C42812","wikidata":"https://www.wikidata.org/wiki/Q1082910","display_name":"Partition (number theory)","level":2,"score":0.43802163},{"id":"https://openalex.org/C92835128","wikidata":"https://www.wikidata.org/wiki/Q1277447","display_name":"Hierarchical clustering","level":3,"score":0.4316656},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.26191622},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/e21090906","pdf_url":"https://www.mdpi.com/1099-4300/21/9/906/pdf?version=1568790669","source":{"id":"https://openalex.org/S195231649","display_name":"Entropy","issn_l":"1099-4300","issn":["1099-4300"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/6e377283f5224c8db5c9ffe7ed27d102","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515435","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/e21090906","pdf_url":"https://www.mdpi.com/1099-4300/21/9/906/pdf?version=1568790669","source":{"id":"https://openalex.org/S195231649","display_name":"Entropy","issn_l":"1099-4300","issn":["1099-4300"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":46,"referenced_works":["https://openalex.org/W1492552267","https://openalex.org/W1516320211","https://openalex.org/W1524694174","https://openalex.org/W1532325895","https://openalex.org/W1567276288","https://openalex.org/W1570329253","https://openalex.org/W1582321261","https://openalex.org/W1735309556","https://openalex.org/W1963735168","https://openalex.org/W1968371014","https://openalex.org/W2001985085","https://openalex.org/W2005330159","https://openalex.org/W2024941397","https://openalex.org/W2049633694","https://openalex.org/W2079023204","https://openalex.org/W2079361215","https://openalex.org/W2079726601","https://openalex.org/W2111619626","https://openalex.org/W2117688906","https://openalex.org/W2125055259","https://openalex.org/W2134696506","https://openalex.org/W2145862222","https://openalex.org/W2149450361","https://openalex.org/W2149706766","https://openalex.org/W2153293405","https://openalex.org/W2171029115","https://openalex.org/W2182722412","https://openalex.org/W2333008481","https://openalex.org/W2341234495","https://openalex.org/W253433213","https://openalex.org/W2738794199","https://openalex.org/W2905522077","https://openalex.org/W2908182356","https://openalex.org/W2911964244","https://openalex.org/W2912934387","https://openalex.org/W2951494616","https://openalex.org/W2954672586","https://openalex.org/W2961253680","https://openalex.org/W2962880855","https://openalex.org/W2965255203","https://openalex.org/W2966257894","https://openalex.org/W2968724981","https://openalex.org/W4212883601","https://openalex.org/W4235169531","https://openalex.org/W4236137412","https://openalex.org/W4399582695"],"related_works":["https://openalex.org/W3003323003","https://openalex.org/W2364594919","https://openalex.org/W2219338811","https://openalex.org/W2167092671","https://openalex.org/W2140439590","https://openalex.org/W2106235829","https://openalex.org/W2103830593","https://openalex.org/W2060259161","https://openalex.org/W1980381208","https://openalex.org/W1861706286"],"abstract_inverted_index":{"Data":[0],"classification":[1,221],"is":[2,109,128,162,180,211,222,251],"an":[3,165],"important":[4],"research":[5],"topic":[6],"in":[7,17,28,35,139,241,300],"the":[8,14,91,94,112,117,124,132,158,173,183,187,191,197,203,207,218,225,229,232,236,242,245,249,254,259,290,303],"field":[9],"of":[10,38,53,83,93,105,134,193,238,248,264,279,302],"data":[11,24,48,78,107,274,299,304],"mining.":[12],"With":[13],"rapid":[15],"development":[16],"social":[18],"media":[19],"sites":[20],"and":[21,30,40,136,143,235,244,271,282],"IoT":[22],"devices,":[23],"have":[25,287],"grown":[26],"tremendously":[27],"volume":[29],"complexity,":[31],"which":[32,257],"has":[33,55,258],"resulted":[34],"a":[36,50,57,67,80,103],"lot":[37],"large":[39,51,81],"complex":[41,47],"high-dimensional":[42,46,77],"data.":[43],"Classifying":[44],"such":[45],"with":[49,79,190,276],"number":[52,82,133,192],"classes":[54],"been":[56],"great":[58],"challenge":[59],"for":[60,75],"current":[61],"state-of-the-art":[62,295],"methods.":[63],"This":[64],"paper":[65],"presents":[66],"novel,":[68],"hierarchical,":[69],"gamma":[70],"mixture":[71],"model-based":[72],"unsupervised":[73],"method":[74,292],"classifying":[76],"classes.":[84],"In":[85],"this":[86],"method,":[87],"we":[88],"first":[89],"partition":[90],"features":[92],"dataset":[95,142],"into":[96,164],"feature":[97,113],"strata":[98,114],"by":[99,115,171,186,196,227],"using":[100,116,172],"k-means.":[101],"Then,":[102,157],"set":[104],"subspace":[106,119,141,154,159],"sets":[108],"generated":[110,181],"from":[111,182],"stratified":[118],"sampling":[120],"method.":[121,175],"After":[122,201],"that,":[123],"GMM":[125,198],"Tree":[126,199],"algorithm":[127,189],"used":[129],"to":[130,149,151,213,253,297],"identify":[131],"clusters":[135,138,194],"initial":[137,146],"each":[140,214,239],"passing":[144],"these":[145],"cluster":[147,167,215,240,250],"centers":[148],"k-means":[150,188],"generate":[152],"base":[153],"clustering":[155,160,178,205],"results.":[156],"result":[161,179],"integrated":[163],"object":[166,226,234,256],"association":[168],"(OCA)":[169],"matrix":[170,185],"link-based":[174],"The":[176,284],"ensemble":[177,204],"OCA":[184],"identified":[195],"algorithm.":[200],"producing":[202],"result,":[206],"dominant":[208],"class":[209,246],"label":[210,247],"assigned":[212,252],"after":[216],"computing":[217,228],"purity.":[219],"A":[220,262],"made":[223],"on":[224,268],"distance":[230],"between":[231],"new":[233,255,291],"center":[237],"classifier,":[243],"shortest":[260],"distance.":[261],"series":[263],"experiments":[265],"were":[266],"conducted":[267],"twelve":[269],"synthetic":[270],"eight":[272],"real-world":[273],"sets,":[275],"different":[277],"numbers":[278],"classes,":[280],"features,":[281],"objects.":[283],"experimental":[285],"results":[286],"shown":[288],"that":[289],"outperforms":[293],"other":[294],"techniques":[296],"classify":[298],"most":[301],"sets.":[305]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2973687035","counts_by_year":[{"year":2023,"cited_by_count":3}],"updated_date":"2025-01-15T20:46:53.478454","created_date":"2019-09-26"}